2018 HSC Mathematics Advance

 Solutions
Multiple Choice

Multiple Choice Answer Key

Question	Answer
1	B
2	C
3	A
4	D
5	D
6	C
7	C
8	D
9	B
10	D

Explanation
1.

$$
\begin{aligned}
7^{-1.3} & =0.079684 \\
& =0.08 \quad(2 \mathrm{dp})
\end{aligned}
$$

2.

$$
\begin{aligned}
\frac{x_{p}+x_{Q}}{2} & =x_{R} \\
\frac{5+x_{Q}}{2} & =9 \\
x_{Q} & =18-5 \\
x_{Q} & =13
\end{aligned}
$$

$$
\begin{align*}
\frac{y_{p}+y_{Q}}{2} & =y_{R} \\
\frac{3+y_{Q}}{2} & =5 \\
x_{Q} & =10-3 \\
x_{Q} & =7 \tag{13,7}
\end{align*}
$$

3.

$$
x+3 y+6=0 .
$$

x-int: let $y=0$:

$$
\begin{aligned}
& \therefore x=-6 . \\
& \therefore(-6,0) .
\end{aligned}
$$

4.

$$
\begin{aligned}
r & =\frac{|3(3)-4(-2)+3|}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{20}{5} \\
& =4 \text { units. } \\
\therefore(x-3)^{2}+(y+2)^{2} & =16
\end{aligned}
$$

5.

$$
\begin{aligned}
y & =\sin (\ln x) \\
y^{\prime} & =\frac{1}{x} \cos (\ln x) \\
\therefore y^{\prime} & =\frac{\cos (\ln x)}{x} .
\end{aligned}
$$

6. There are 4 different pairs of shoes i.e. 8 shoes

First shoe that is picked does not matter i.e. $P=1$
Second shoe that is picked, since there are 7 left, only 1 will match with first shoe i.e. $P=\frac{1}{7}$

$$
\begin{aligned}
\therefore P(\text { matching }) & =1 \times \frac{1}{7} \\
& =\frac{1}{7}
\end{aligned}
$$

7.

$$
\begin{aligned}
& \int_{0}^{3} f(x) d x+\int_{3}^{4} f(x) d x=\int_{0}^{4} f(x) d x . \\
\Longrightarrow \int_{0}^{3} f(x) d x & =\int_{0}^{4} f(x) d x-\int_{3}^{4} f(x) d x \\
& =(10)-(-3) \\
& =13
\end{aligned}
$$

Now solving for the integral in interest, we get

$$
\begin{aligned}
\int_{-1}^{3} f(x) d x & =\int_{-1}^{0} f(x) d x+\int_{0}^{3} f(x) d x \\
& =(-2)+(13) \\
& =11
\end{aligned}
$$

Hence, the answer is C.
8.

$$
x^{2}=4 a y
$$

Substituting $x=12$ and $y=4$, we get

$$
\begin{aligned}
12^{2} & =4 a(4) \\
16 a & =144 \\
a & =9 \mathrm{~cm} .
\end{aligned}
$$

9.

$$
\begin{aligned}
x & =b \Rightarrow \text { stationary point of } y=f(x) \\
\therefore f^{\prime \prime}(x) & =0
\end{aligned}
$$

10. $\int_{0}^{\pi} f(x) d x=\int_{\pi}^{2 \pi} f(x) d x$
\therefore functionshouldbe $f(x)=\cos \frac{x}{2}$

Question 11

(a)

$$
\begin{aligned}
\frac{3}{3+\sqrt{2}} & =\frac{3}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}} \\
& =\frac{9-3 \sqrt{2}}{9-2} \\
& =\frac{9-3 \sqrt{2}}{7}
\end{aligned}
$$

(b)

$$
\begin{aligned}
1-3 x & >10 \\
-3 x & >9 \\
x & <-3 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{8 x^{3}-27 y^{3}}{2 x-3 y} & =\frac{(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)}{2 x-3 y} \\
& =4 x^{2}+6 x y+9 y^{2} .
\end{aligned}
$$

(d) (i)

$$
\begin{gathered}
T_{3}=8 \Longrightarrow 8=a+2 d \\
T_{20}=59 \Longrightarrow 59=a+19 d .
\end{gathered}
$$

Subtracting the above two equations, we get

$$
\begin{aligned}
-51 & =-17 d \\
d & =3 .
\end{aligned}
$$

(ii)

$$
T_{50}=a+49(3)=a+147 .
$$

From (i), $a=8-2(3)=2$.

$$
\begin{aligned}
\therefore T_{50} & =2+49(3) \\
& =149 .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{0}^{3} e^{5 x} d x & =\left[\frac{e^{5 x}}{5}\right]_{0}^{3} \\
& =\frac{1}{5}\left(e^{15}-1\right) .
\end{aligned}
$$

(f)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} \tan x\right) & =2 x \tan x+\sec ^{2} x \cdot x^{2} \\
& =x\left(2 \tan x+x \sec ^{2} x\right) .
\end{aligned}
$$

(g)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{x}}{x+1}\right) & =\frac{e^{x}(x+1)-e^{x}}{(x+1)^{2}} \\
& =\frac{e^{x}(x+1-1)}{(x+1)^{2}} \\
& =\frac{x e^{x}}{(x+1)^{2}}
\end{aligned}
$$

Question 12

(a) (i) $\angle A B C=50^{\circ}+60^{\circ}=110^{\circ}$

$$
\text { (ii) } \begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-2 A B \cdot B C \cdot \cos 110^{\circ} \\
& =180089.65 \\
A C & =424.37 \ldots \\
& =420 \mathrm{~km}(\text { nearest } 10 \mathrm{~km})
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\cos 2 x \\
\frac{d y}{d x} & =-2 \sin 2 x \\
\left.\frac{\pi}{6}\right) & =-2 \sin \frac{\pi}{3} \\
& =-2 \cdot \frac{\sqrt{3}}{2} \\
& =-\sqrt{3}
\end{aligned}
$$

$$
\frac{d y}{d x}\left(x=\frac{\pi}{6}\right)=-2 \sin \frac{\pi}{3}
$$

When $x=\frac{p i}{6}$, we have $y=\cos \frac{\pi}{3}=\frac{1}{2}$. Substituting into the point gradient formula, we have

$$
\begin{aligned}
y-\frac{1}{2} & =-\sqrt{3}\left(x-\frac{\pi}{6}\right) \\
y & =-\sqrt{3}\left(x-\frac{\pi}{6}\right)+\frac{1}{2}
\end{aligned}
$$

(c) (i) In $\triangle A D F$ and $\triangle A B E$

$$
\begin{align*}
A B & =A D \\
D F & =B E \\
A C-F C & =B C-E C \\
\angle A D F & =\angle A B E \\
& =90^{\circ} \\
\triangle A D F & \equiv \triangle A B E \tag{SAS}
\end{align*}
$$

(By definition of a square)
(Vertices of square meet at right angles.)
(ii) Since $E C=F C=4 \mathrm{~cm}$, then the side length of the square is 14 cm . Hence, we have the area of CEF as

$$
\begin{aligned}
A_{\text {CEF }} & =A_{S}-2 \times A_{A D F} \\
& =14^{2}-2\left(\frac{1}{2} \cdot 14 \cdot 10\right) \\
& =56 \mathrm{~cm}^{2} .
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
\frac{d x}{d t} & =2 t-4 \\
\int d x & =\int 2 t-4 d t \\
x & =\frac{2 t^{2}}{2}-4 t+C
\end{aligned}
$$

When $t=0, x=3$ and $C=3$.

$$
x=t^{2}-4 t+3
$$

(ii) When a particle is stationary, then we have

$$
\begin{aligned}
\frac{d x}{d t} & =0 \\
t^{2}-4 t+3 & =0 \\
(t-3)(t-1) & =0
\end{aligned}
$$

Hence, the particle is stationary during times $t=1$ and $t=3$.
(iii)

$$
\frac{d^{2} x}{d t^{2}}=2 t-4
$$

Let $\frac{d^{2} x}{d t^{2}}=0$, we have

$$
\begin{aligned}
2 t-4 & =0 \\
t & =2 .
\end{aligned}
$$

When $t=2$,

$$
\begin{aligned}
x & =\frac{2^{3}}{3}-2 \cdot 2^{2}+3 \cdot 2 \\
& =\frac{2}{3} .
\end{aligned}
$$

Question 13

(a) (i)

$$
\begin{aligned}
y & =6 x^{2}-x^{3} \\
y^{\prime} & =12 x-3 x^{2} \\
& =3 x(4-x) .
\end{aligned}
$$

By letting $y^{\prime}=0$, we have $x=0$ and $x=4$. Hence, we have stationary points at $(0,0)$ and $(4,32)$.
To determine the nature of the stationary points, consider the sign of y^{\prime}. Here, the sign of y^{\prime} is given by $y^{\prime}=x(4-x)$.

x		0		4	
y^{\prime}	-	0	+	0	-
y	\searrow	0	\nearrow	32	\searrow

\therefore Max at $(4,32)$ and min at $(0,0)$.
(ii)

$$
\begin{aligned}
y^{\prime \prime} & =12-6 x \\
& =6(2-x)
\end{aligned}
$$

Letting $y^{\prime \prime}=0$, we get

$$
\begin{aligned}
x & =2 \\
\therefore y & =16 .
\end{aligned}
$$

Hence, the sign of y " is given by $2-x$.

x		2	
$y^{\prime \prime}$	+	0	-
y	\cup	16	\cap

\therefore Point of inflexion at $(2,16)$.
(iii)

(b) (i) In $\triangle A B C$ and $\triangle C B D$
$\angle A B C$ is common
$B C$ is common
$\angle A B C=\angle B D C($ both $=\angle A B C)$
$\therefore \triangle A B C|\mid \triangle C B D$
(ii)

$$
\begin{aligned}
\frac{B D}{2} & =\left(\frac{2}{3} \quad\right. \text { (ratios of corresponding similar triangle 's are equal for corresponding sides) } \\
B D & =\frac{4}{3} \\
\therefore A D & =A B-B D \\
& =3-\frac{4}{3} \\
& =\frac{5}{3}
\end{aligned}
$$

(c) (i) Using the fact that in 1960 (50 years after inception), the population was 184

$$
\begin{aligned}
P(t) & =92 e^{k t} \\
\operatorname{sub} P(t) & =184, t=50 \\
184 & =92 e^{50 k} \\
e^{50 k} & =\frac{184}{92} \\
k & =\frac{1}{50} \ln \frac{184}{92} \\
& =0.0139(4 d p)
\end{aligned}
$$

(ii) The population at time $t=110$ is given by $P(110)$, where

$$
\begin{aligned}
P(100) & =92 e^{\left(\frac{1}{50} \ln \left(\frac{184}{92}\right) 110\right)} \\
& =422.72 \ldots \\
& =423 \text { million }
\end{aligned}
$$

Question 14

(a) (i)

$$
\begin{aligned}
\triangle K L M & =\frac{1}{2} a b \sin C \\
\triangle K L M & =\frac{1}{2}(3)(6) \sin 60^{\circ} \\
\therefore \triangle K L M & =\frac{9 \sqrt{3}}{2} u^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\triangle K L M & =\triangle K L N+\triangle M L N \\
\frac{1}{2}(3)(x) \sin 30^{\circ}+\frac{1}{2}(6)(x) \sin 30^{\circ} & =\frac{9 \sqrt{3}}{2} \\
\frac{3}{2} x+3 x & =9 \sqrt{3} \\
\frac{9}{2} x & =9 \sqrt{3} \\
\therefore x & =2 \sqrt{3} u
\end{aligned}
$$

(b)

$$
\begin{aligned}
V & =\pi \int_{c}^{d} x^{2} d y \\
V & =\pi \int_{1}^{10}(y-1)^{\frac{1}{2}} d y \\
V & =\frac{2 \pi}{3}[(y-1) \sqrt{y-1}]_{1}^{10} \\
V & =\frac{2 \pi}{3}[9(3)-0] \\
\therefore V & =18 \pi u^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(x) & =x^{3}+k x^{2}+3 x-5 \\
f^{\prime}(x) & =3 x^{2}+2 k x+3
\end{aligned}
$$

To have no stationary points, there must be no solutions to $f^{\prime}(x)=0$

$$
3 x^{2}+2 k x+3=0
$$

For no solutions, $\Delta<0$

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& \Delta=(2 k)^{2}-4(3)(3) \\
& \Delta=4 k^{2}-36
\end{aligned}
$$

$$
\begin{aligned}
\Delta & <0 \\
4 k^{2}-36 & <0 \\
4 k^{2} & <36 \\
k^{2} & <9 \\
\therefore-3<k & <3
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
T_{n} & =2^{n}+n \\
& \\
T_{1} & =2^{(1)}+(1) \\
& =3 \\
T_{2} & =2^{(2)}+(2) \\
& =6 \\
T_{3} & =2^{(3)}+(3) \\
& =11
\end{aligned}
$$

$\therefore T_{1}=3, T_{2}=6, T_{3}=11$
(ii)

$$
\begin{aligned}
S_{20} & =\left(2^{1}+1\right)+\left(2^{2}+2\right)+\ldots+\left(2^{19}+19\right)+\left(2^{20}+20\right) \\
& =\left(2^{1}+2^{2}+\ldots+2^{19}+2^{20}\right)+(1+2+\ldots+19+20) \\
& =\frac{2\left(1-2^{20}\right)}{1-2}+\frac{20}{2}[2(1)+(20-1)(1)] \\
& =2097360
\end{aligned}
$$

NOTE: sum of arithmetic progression and geometric progression formula was used at (*)
(e) (i)
$\mathrm{P}($ at least 1 faulty pen $)=1-\mathrm{P}($ no faulty pens $)$

$$
\begin{aligned}
& =1-\frac{9}{10} \times \frac{19}{20} \\
& =\frac{29}{200}
\end{aligned}
$$

(ii)

Case 1: Pick Machine A
$P($ no faulty $\mid A)=\frac{9}{10} \times \frac{9}{10}$

$$
=\frac{81}{100}
$$

Case 2: Pick Machine B
$\mathrm{P}\left(\right.$ no faulty | B) $=\frac{19}{20} \times \frac{19}{20}$

$$
=\frac{361}{400}
$$

$$
\begin{aligned}
\therefore \mathrm{P}(\text { no faulty }) & =\frac{1}{2}\left(\frac{81}{100}\right)+\frac{1}{2}\left(\frac{361}{400}\right) \\
& =\frac{137}{160}
\end{aligned}
$$

Question 15

(a) (i)

$$
l(t)=12+2 \cos \left(\frac{2 \pi t}{366}\right)
$$

Substituting $t=0$ into $l(t)$, we get

$$
\begin{aligned}
l(0) & =12+2 \cos \left(\frac{2 \pi(0)}{366}\right) \\
& =14
\end{aligned}
$$

\therefore The length of daylight is 14 hours.
(ii) We will find the range of $l(t)$.

$$
\begin{aligned}
-1 & \leq \cos \left(\frac{2 \pi t}{366}\right) \leq 1 \\
-2 & \leq 2 \cos \left(\frac{2 \pi t}{366}\right) \leq 2 \\
10 & \leq 12+2 \cos \left(\frac{2 \pi t}{366}\right) \leq 14 \\
10 & \leq l(t) \leq 14
\end{aligned}
$$

\therefore The shortest length of daylight is 10 hours.
(iii) Let $l(t)=11$.

$$
\begin{aligned}
12+2 \cos \left(\frac{2 \pi t}{366}\right) & =11 \\
\cos \left(\frac{2 \pi t}{366}\right) & =-\frac{1}{2} \\
\frac{2 \pi t}{366} & = \pm \frac{2 \pi}{3}+k 2 \pi \\
t & = \pm 122+k 366
\end{aligned}
$$

Now for $0 \leq t \leq 366$, we substitute

$$
\begin{aligned}
& k=0 \Longrightarrow t=122 \\
& k=1 \Longrightarrow t=244 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
A_{1} & =\int_{0}^{k} \frac{d x}{x+3} \\
& =[\ln (x+3)]_{0}^{k} \\
& =\ln (k+3)-\ln (3) \\
& =\ln \left(\frac{k+3}{3}\right) . \\
A_{2} & =\int_{k}^{45} \frac{d x}{x+3} \\
& =[\ln (x+3)]_{k}^{45} \\
& =\ln (48)-\ln (k+3) \\
& =\ln \left(\frac{48}{k+3}\right) .
\end{aligned}
$$

Since $A_{1}=A_{2}$,

$$
\begin{aligned}
\ln \left(\frac{k+3}{3}\right) & =\ln \left(\frac{48}{k+3}\right) \\
\frac{k+3}{3} & =\frac{48}{k+3} \\
(k+3)^{2} & =144 \\
k+3 & = \pm 12 \\
k & =-3 \pm 12 \\
k & =9 \quad(k>0) .
\end{aligned}
$$

(c) (i)

$$
A=\int_{a}^{b} y_{2}-y_{1} d x
$$

In this case, $y_{2}=2 x, y_{1}=x^{3}-7 x$.

$$
\begin{aligned}
\therefore A & =\int_{0}^{3}(2 x)-\left(x^{3}-7 x\right) d x \\
& =\int_{0}^{3} 2 x-x^{3}+7 x d x \\
& =\left[\frac{2 x^{2}}{2}-\frac{x^{4}}{4}+\frac{7 x^{2}}{2}\right]_{0}^{3} \\
& =\frac{81}{4} \text { units }^{2} .
\end{aligned}
$$

(ii)

$$
A=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] .
$$

Consider $f(x)=2 x-\left(x^{3}-7 x\right)=9 x-x^{3}$. Now substituting values for x_{i}, we get

$$
\begin{gathered}
x_{0}=0 \Longrightarrow f\left(x_{0}\right)=0 \\
x_{1}=\frac{3}{2} \Longrightarrow f\left(x_{1}\right)=9\left(\frac{3}{2}\right)-\left(\frac{3}{2}\right)^{2}=\frac{81}{8} \\
x_{2}=3 \Longrightarrow f\left(x_{2}\right)=9(3)-(3)^{3}=0
\end{gathered}
$$

$$
\begin{aligned}
\therefore A & =\frac{3-0}{6}\left[0+4\left(\frac{81}{8}\right)+0\right] \\
& =\frac{81}{4} \quad \text { units }^{2} .
\end{aligned}
$$

(iii)

$$
y=x^{3}-7 x \Longrightarrow y^{\prime}=3 x^{2}-7
$$

Since parallel to $y=2 x$, we can equate gradients. Hence, we get

$$
\begin{aligned}
3 x^{2}-7 & =2 \\
x^{2} & =3 \\
x & = \pm \sqrt{3} \\
x & =(x>0) .
\end{aligned}
$$

Substituting $x=\sqrt{3}$ into y,

$$
\begin{aligned}
y & =(\sqrt{3})^{3}-7(\sqrt{3}) \\
& =-4 \sqrt{3}
\end{aligned}
$$

$$
\therefore P(\sqrt{3},-4 \sqrt{3})
$$

(iv)

$$
\begin{aligned}
b & =O A \\
& =\sqrt{(3-0)^{2}+(6-0)^{2}} \\
& =\sqrt{45}
\end{aligned}
$$

$$
h=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}} .
$$

First we will rearrange our equation to get

$$
y=2 x \Longrightarrow 2 x-y=0
$$

and use the point $P(\sqrt{3},-4 \sqrt{3})$.

$$
\begin{aligned}
h & =\frac{|2(\sqrt{3})-(-4 \sqrt{3})+0|}{\sqrt{2^{2}+(-1)^{2}}} \\
& =\frac{|6 \sqrt{3}|}{\sqrt{5}} \\
& =\frac{6 \sqrt{3}}{\sqrt{5}} \text { units. } \\
\therefore A & =\frac{1}{2}(\sqrt{45})\left(\frac{6 \sqrt{3}}{\sqrt{5}}\right) \\
& =\frac{6 \sqrt{135}}{2 \sqrt{5}} \\
& =9 \sqrt{3} \text { units }^{2} .
\end{aligned}
$$

Hence the area of $\triangle O A P$ is given by $9 \sqrt{3}$ units 2.

Question 16

(a) (i)

$$
V=\frac{1}{3} \pi r^{2} h
$$

Since the radius of the cone is $x \mathrm{~cm}, r=x$.
Let the height of the cone be h. By Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+x^{2} & =10^{2} \\
x^{2} & =100-h^{2} \\
x & = \pm \sqrt{100-h^{2}} \\
\therefore x & =\sqrt{100-h^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\frac{1}{3} \pi x^{2} \sqrt{100-x^{2}} \\
\frac{d V}{d x} & =\frac{\pi}{3}\left(2 x \sqrt{100-x^{2}}+x^{2} \frac{-2 x}{2 \sqrt{100-x^{2}}}\right) \\
& =\frac{\pi}{3}\left(2 x \sqrt{100-x^{2}}-\frac{x^{3}}{\sqrt{100-x^{2}}}\right) \\
& =\frac{\pi}{3}\left(\frac{2 x\left(100-x^{2}\right)-x^{3}}{\sqrt{100-x^{2}}}\right) \\
& =\frac{\pi}{3}\left(\frac{200 x-3 x^{3}}{\sqrt{100-x^{2}}}\right) \\
& =\frac{\pi x\left(200-3 x^{2}\right)}{3 \sqrt{100-x^{2}}}
\end{aligned}
$$

(iii) Let $\frac{d V}{d x}=0$ for stationary points.

$$
\begin{aligned}
\frac{\pi x\left(200-3 x^{2}\right)}{3 \sqrt{100-x^{2}}} & =0 \\
x\left(200-3 x^{2}\right) & =0 \\
x=0 \text { or } x^{2} & =\frac{200}{3} \\
x & = \pm 10 \sqrt{\frac{2}{3}}
\end{aligned}
$$

Since $x>0$, only consider $x=10 \sqrt{\frac{2}{3}}$.
Relative maximum of V occurs when $x=10 \sqrt{\frac{2}{3}}$. However, since there are no other stationary points in the domain, $x>0$, the global maximum of V occurs when $x=10 \sqrt{\frac{2}{3}}$.
To determine the value of θ, note that the circumference of the base of the cone is the same length as the arc subtended by the circle, radius 10 cm and angle θ.

For the circumference of the base of the cone,

$$
\begin{aligned}
\text { Length } & =2 \pi x \\
& =20 \pi \sqrt{\frac{2}{3}} \mathrm{~cm}
\end{aligned}
$$

For the arc subtended by the circle,

$$
\begin{aligned}
\text { Length } & =10 \theta \\
10 \theta & =20 \pi \sqrt{\frac{2}{3}} \\
\therefore \theta & =\frac{2 \sqrt{2} \pi}{\sqrt{3}}
\end{aligned}
$$

(b) (i) The following table indicates all combination of rolls for the first two dice.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	X	X	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$
$\mathbf{2}$	X	X	X	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$
$\mathbf{3}$	$\frac{1}{6}$	X	X	X	$\frac{1}{6}$	$\frac{2}{6}$
$\mathbf{4}$	$\frac{2}{6}$	$\frac{1}{6}$	X	X	X	$\frac{1}{6}$
$\mathbf{5}$	$\frac{3}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	X	X	X
$\mathbf{6}$	$\frac{4}{6}$	$\frac{3}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	X	X

' X ' indicates no chance of winning based upon the first two roll. If winning is possible, the probability of winning on the third roll, given the first two rolls, is indicated.
$P($ no chance of winning $)=\frac{\text { number of X's }}{\text { total possible outcomes }}=\frac{16}{36}=\frac{4}{9}$
(ii) $P($ winning $)=\frac{1}{36}\left(8 \times \frac{1}{6}+6 \times \frac{2}{6}+4 \times \frac{3}{6}+2 \times \frac{4}{6}\right)=\frac{5}{27}$
(c) (i)

$$
\begin{aligned}
A_{0} & =300000 \\
A_{1} & =A_{0} \times 1.04-P \\
& =300000(1.04)-P \\
A_{2} & =A_{1} \times 1.04-1.05 P \\
& =(300000(1.04)-P(1.04)-1.05 P \\
& =300000(1.04)^{2}-1.04 P-1.05 P \\
& =300000(1.04)^{2}-P[(1.04)+(1.05)]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{3} & =A_{2} \times 1.04-1.05^{2} P \\
& =\left[300000(1.04)^{2}-P[(1.04)+(1.05)]\right](1.04)-1.05^{2} P \\
& =300000(1.04)^{3}-P\left[(1.04)^{2}+(1.04)(1.05)\right]-1.05^{2} P \\
& =300000(1.04)^{3}-P\left[(1.04)^{2}+(1.04)(1.05)+(1.05)^{2}\right]
\end{aligned}
$$

(iii)

$$
A_{n}=300000(1.04)^{n}-P\left[(1.04)^{n-1}+(1.04)^{n-2}(1.05)^{1}+\ldots+(1.04)^{1}(1.05)^{n-2}+(1.05)^{n-1}\right]
$$

Note that $\left[(1.04)^{n-1}+(1.04)^{n-2}(1.05)^{1}+\ldots+(1.04)^{1}(1.05)^{n-2}+(1.05)^{n-1}\right]$ forms a geometric series of n terms, with first term is $(1.04)^{n-1}$ and common ratio $\frac{1.05}{1.04}$.

$$
A_{n}=300000(1.04)^{n}-P(1.04)^{n-1}\left(\frac{1-\left(\frac{1.05}{1.04}\right)^{n}}{1-\frac{1.05}{1.04}}\right)
$$

For money to be in the account, $A_{n}>0$.

$$
\begin{aligned}
300000(1.04)^{n}-P(1.04)^{n-1}\left(\frac{1-\left(\frac{1.05}{1.04}\right)^{n}}{1-\frac{1.05}{1.04}}\right) & >0 \\
P(1.04)^{n-1}\left(\frac{1-\left(\frac{1.05}{1.04}\right)^{n}}{1-\frac{1.05}{1.04}}\right) & <300000(1.04)^{n} \\
\frac{1-\left(\frac{1.05}{1.04}\right)^{n}}{1.04\left(1-\frac{1.05}{1.04}\right)} & <\frac{300000}{P} \\
\frac{1-\left(\frac{1.05}{1.04}\right)^{n}}{-0.01} & <\frac{300000}{P} \\
1-\left(\frac{1.05}{1.04}\right)^{n} & >-\frac{3000}{P} \\
\left(\frac{1.05}{1.04}\right)^{n} & <1+\frac{3000}{P} \\
\left(\frac{105}{104}\right)^{n} & <1+\frac{3000}{P} .
\end{aligned}
$$

