NGO ${ }^{\circ}$ SONS

ACADEMIC COACHING

2018 HSC Mathematics Extension 2

 Solutions
Multiple Choice

Multiple Choice Answer Key

Question	Answer
1	B
2	C
3	D
4	C
5	A
6	A
7	D
8	B
9	B
10	C

Explanation

1. $\int \frac{1}{\sqrt{1-4 x^{2}}} d x=\frac{1}{2} \int \frac{1}{\sqrt{\frac{1}{4}-x^{2}}} d x$

$$
=\frac{1}{2} \sin ^{-1} 2 x+C
$$

Hence, the answer is B.
2. Rearranging the equation $9 x^{2}-4 y^{2}=36$ to $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ gives a value of $a=2$ and $b=3$.

Thus the asymptotes are $y= \pm \frac{b}{a} x= \pm \frac{3}{2} x$. Hence C.
3. Let $y=-\frac{1}{x} \Longrightarrow x=-\frac{1}{y}$.

Then the equation with roots $-\frac{1}{\alpha},-\frac{1}{\beta}$ and $-\frac{1}{\gamma}$ is

$$
\begin{array}{r}
\left(-\frac{1}{y}\right)^{3}+2\left(-\frac{1}{y}\right)^{2}+5\left(-\frac{1}{y}\right)-1=0 \\
-1+2 y-5 y^{2}-y^{3}=0
\end{array}
$$

A variable change from y back into x gives a cubic equation of $x^{3}+5 x^{2}-2 x+1=0$. Hence D .
4. - The square root term is positive, and hence y is positive. So the only possible answers are A and C.

- As $x \rightarrow \infty, y \rightarrow 0$, so the answer is C.

5. In this question we will use the annulus method. The radius of the solid is given by $y-(-1)=y+1=$ $e^{3 x}+1$. This immediately eliminates options C and D, meaning either A or B is correct. In the annulus method we have π on the outside of our integral (in the cylindrical shells method, we will have 2π on the outside of our integral). Hence, the answer is A.
6. Let $z^{6}=i$, where $z=r(\cos \theta+i \sin \theta)$.

Then $r^{6}(\cos \theta+i \sin \theta)^{6}=i$.
$r^{6}(\cos 6 \theta+i \sin 6 \theta)=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$.
Hence $r=1$ and $6 \theta=\frac{\pi}{2}+k 2 \pi$ for some integer k.

$$
\therefore \theta=\frac{\pi}{12}+k \frac{\pi}{3}
$$

Looking through our options, both A and C satisfy the above condition. But the required modulus must also be 1. Hence, the answer is A.
7. The equation is equivalent to $\arg (z)=\arg (z-(-1+i))$ which is equivalent to $\arg (z)-\arg (z-(-1+i))=$ 0.

The angle between the vectors must be 0 , and this occurs when they are pointing in the same direction. Hence the locus of z are the outer rays.

Hence D.
8. The function $F(x)=\int_{0}^{x} f(t) d t$ represents the signed area of $f(x)$ from 0 to x.

Consider the behaviour of $f(x)$ and $F(x)$ under these cases:

- From $0 \rightarrow a$: The area under $f(x)$ increases at an increasing rate, and the curve $F(x)$ will be concave up.
- From $a \rightarrow b$: The area is increasing, though now at a decreasing rate. The curve $F(x)$ is now concave down.
- At $x=b$: There is a stationary point for $F(x)$. The area changes from increasing to decreasing.
- From $b \rightarrow c$: We now have negative area, causing $F(x)$ to decrease.
- At c : The area is still decreasing, but changes here from decreasing at an increasing rate, to decreasing at a decreasing rate. Hence there is a change in concavity for $F(x)$.
- From $c \rightarrow d$: The area decreases but more slowly. The curve is concave up.
- At d : The graph for $y=F(x)$ goes from decreasing to increasing. There is a stationary point here. The curve is still concave up.
- After the point d : The curve is still concave up. The area increases at an increasing rate.

Hence B.
9. This question makes use of two properties.

- A real number multiplied by a purely imaginary number is imaginary.

Proof: Let the real number be a and let the imaginary number be $b i$. Then their product is $a b i$ which is purely imaginary.

- A purely imaginary number multiplied by a purely imaginary number is a real number.

Proof: Let the two purely imaginary numbers be $a i$ and $b i$, where a and b are real. Then their product is $a b i^{2}=-a b$ which is purely real.

This question also requires the student to recognise the expressions can be converted into perfect squares.
$a^{2} p^{2}+b^{2} q^{2}-2 a b p q=(a p-b q)^{2}$. Since the inside of the square is a purely imaginary number, its square is negative. Hence $(a p-b q)^{2}<0 \Longrightarrow a^{2} p^{2}+b^{2} q^{2}<2 a b p q$.
$a^{2} b^{2}+p^{2} q^{2}-2 a b p q=(a b-p q)^{2}$. Since the inside of the square is a real number, its square is positive. Hence $(a p-b q)^{2}>0 \Longrightarrow a^{2} p^{2}+b^{2} q^{2}>2 a b p q$.

Hence B.
10. Consider $y=f(x)$ and $y=g(x) . f(x)$ is an odd function and $g(x)$ is an even function, meaning that the x-coordinates for their stationary points will be symmetric about the y-axis. Note that if we consider option A $(a<b)$, we can pick values for a and b such that this will be true. However, as the functions' stationary point x-coordinates are symmetric about the y-axis, this means that $a<b$ implies that $b>a$, which is clearly a contradiction. Hence we cannot take A. Similarly, we can eliminate B as well. Now we have to pick either C or D . We know that one of C or D must be true so we will test a and b values. A stationary point of $f(x)$ is $x=a$, we will pick $a=\frac{\pi}{2}$. Now testing $b=\frac{\pi}{2}$, we get $g^{\prime}\left(\frac{\pi}{2}\right)=1$. Here we check if the stationary point is to the left or right of $x=a=\frac{\pi}{2}$. To do this, we will consider the gradient of $g^{\prime}(x)$,

$$
g^{\prime \prime}(x)=\cos x+\cos x-x \sin x=2 \cos x-x \sin x \Longrightarrow g^{\prime \prime}\left(\frac{\pi}{2}\right)=-\frac{\pi}{2} .
$$

This means that our stationary point for $g(x)$ is to the right of our stationary point for $f(x)$, and hence,

$$
|a|<|b| .
$$

Therefore the answer is C.

Question 11

(a) (i) $z w=(2+3 i)(1-i)$

$$
\begin{aligned}
& =2-2 i+3 i+3 \\
& =5+i
\end{aligned}
$$

(ii) $\bar{z}-\frac{2}{w}=2-3 i-2 w^{-1}$

$$
\begin{aligned}
& =2-3 i-(1+i) \\
& =1-4 i
\end{aligned}
$$

(b) (i) $P(x)=x^{3}+a x^{2}+b$

$$
\begin{aligned}
P(4) & =4^{3}+a \cdot 4^{2}+b \\
0 & =64+16 a+b
\end{aligned}
$$

$$
P^{\prime}(x)=3 x^{2}+2 a x
$$

$$
P^{\prime}(4)=3 \cdot 4^{2}+2 a \cdot 4
$$

$$
\begin{aligned}
& 0=48+8 a \\
& a=-6 \\
& 0=64+16(-6)+b \\
& b=32
\end{aligned}
$$

Using sum of roots, we have

$$
\begin{aligned}
4+4+r & =-a \\
r & =6-8 \\
& =-2
\end{aligned}
$$

(c) (i)

$$
x^{2}-x-6=a\left(x^{2}-3\right)+(b x+c)(x+1)
$$

Let $x=-1$,

$$
\begin{aligned}
(-1)^{2}-(-1)-6 & =a\left((-1)^{2}-3\right) \\
-4 & =a(-2) \\
a & =2 .
\end{aligned}
$$

By equating coefficients of x^{2}, we have

$$
\begin{aligned}
a+b & =1 \\
b & =1-a \\
& =1-2 \\
& =-1 .
\end{aligned}
$$

By equating coefficients of x, we have

$$
\begin{aligned}
b+c & =-1 \\
c & =-1-b \\
& =-1-(-1) \\
& =0 .
\end{aligned}
$$

Hence, $\int \frac{x^{2}-x-6}{(x+1)\left(x^{2}-3\right)} d x=\int \frac{2}{x+1}+\frac{-x}{x^{2}-3} d x$

$$
=2 \log _{e}|x+1|-\frac{1}{2} \log _{e}\left|x^{2}-3\right|+c
$$

(d) (i) $w=u \cdot i$

$$
\begin{aligned}
& =(5+2 i) i \\
& =-2+5 i .
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
v & =u+w \\
& =5+2 i+-2+5 i \\
& =3+7 i
\end{aligned}
$$

(iii) $\arg \left(\frac{w}{v}\right)=\arg w-\arg v$.

From the diagram, $\arg w-\arg v$ corresponds with the $\angle C O B$, which is 45°.
(e) By joining the interval $C B$, we form the angle $C B A$. Suppose $\angle C B A=\theta$. Then $\theta=\angle D$ as equal chords subtends equal angles at the circumference. From Pythagoras, we have

$$
\begin{aligned}
\sin \theta & =\frac{A C}{A B} \\
& =\frac{d}{2 r} \\
\sin D & =\frac{d}{2 r} \\
d & =2 r \sin D .
\end{aligned}
$$

Question 12

(a)

$$
\begin{aligned}
& V=\pi \int_{-1}^{1} \text { Cross-Section } \Delta y \\
& V=\pi \int_{-1}^{1} \frac{\sqrt{3}}{4} x^{2} d y
\end{aligned}
$$

Since $x=1-y^{2}$, then $x^{2}=1-2 y^{2}+y^{4}$.

$$
\begin{aligned}
& V=\int_{-1}^{1} \frac{\sqrt{3}}{4}\left(1-2 y^{2}+y^{4}\right) d y \\
& V=\frac{\sqrt{3}}{4}\left[y-\frac{2 y^{3}}{3}+\frac{y^{5}}{5}\right]_{-1}^{1} \\
& V=\frac{4 \sqrt{3}}{15} u^{3}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
x^{2}+x y+y^{2} & =3 \\
2 x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+2 y \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x}(x+2 y) & =-(2 x+y) \\
\frac{d y}{d x} & =-\frac{2 x+y}{x+2 y}
\end{aligned}
$$

(ii) Let $\frac{d y}{d x}=0$,

$$
\begin{aligned}
-\frac{2 x+y}{x+2 y} & =0 \\
2 x+y & =0 \\
y & =-2 x
\end{aligned}
$$

Substituting $y=2 x$ into $\frac{d y}{d x}$, we have

$$
\begin{aligned}
x^{2}+x(-2 x)+(-2 x)^{2} & =3 \\
x^{2}-2 x^{2}+4 x^{2} & =3 \\
3 x^{2} & =3 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

Hence, we have the following stationary points at $(1,-2)$ and $(-1,2)$.
(c)

$$
\begin{aligned}
\int \frac{x^{2}+2 x+5-5}{x^{2}+2 x+5} d x & =\int 1-\frac{5}{4+(x+1)^{2}} d x \\
& =x-\frac{5}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

(d) (i)

(ii)
(iii)

Question 13

(a) (i) This question requires us to use the method of cylinders.

Using this technique, strips must be parallel to the axis rotation (here it is the x-axis) and then we cut it out. This is what the cylinder looks like when take the strip and rotate it around the y-axis.

Note: Volume of a cylinder: $V=2 \pi r h$
By 'flattening' the cylinder, we obtain a rectangular prism, where the circumference of the circle in the cylinder becomes the width of the rectangular prism.

$$
\begin{aligned}
C A & =2 \pi(1-x) \times(2 y) \\
h & =\Delta x
\end{aligned}
$$

$V=\int_{0}^{1} 2 \pi(1-x) 2 y d x$

Since $y^{2}=x(1-x)^{2}$ then $y=\sqrt{x(1-x)^{2}}$.

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1}(1-x) \times 2 \sqrt{x(1-x)^{2}} d x \\
& =4 \pi \int_{0}^{1}(1-x)^{2} \sqrt{x} d x \\
& =4 \pi \int_{0}^{1}\left(1-2 x+x^{2}\right) \sqrt{x} d x \\
& =4 \pi \int_{0}^{1} \sqrt{x}-2 x \sqrt{x}+x^{2} \sqrt{x} d x \\
& =4 \pi \int_{0}^{1} x^{\frac{1}{2}}-2 x^{\frac{3}{2}}+x^{\frac{5}{2}} d x \\
& =4 \pi\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{4}{5} x^{\frac{5}{2}}+\frac{2}{7} x^{\frac{7}{2}}\right]_{0}^{1} \\
& =4 \pi\left(\frac{2}{3}-\frac{4}{5}+\frac{2}{7}\right) \\
& =\frac{64}{105} \pi u^{3}
\end{aligned}
$$

(b) (i) $z=1-\cos 2 \theta+i \sin 2 \theta$

$$
\begin{aligned}
& =2 \sin ^{2} \theta+i 2 \sin \theta \cos \theta \\
& =2 \sin \theta(\sin \theta+i \cos \theta) \\
|z| & =|2 \sin \theta(\sin \theta+i \cos \theta)| \\
& =2 \sin \theta|\sin \theta+i \cos \theta| \\
& =2 \sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =2 \sin \theta
\end{aligned}
$$

(ii) $\arg z=\arg (2 \sin \theta(\sin \theta+i \cos \theta))$

$$
\begin{aligned}
& =\arg (2 \sin \theta)+\arg (\sin \theta+i \cos \theta) \\
& =0+\arg \left(\cos \left(\frac{\pi}{2}-\theta\right)+i \sin \left(\frac{\pi}{2}-\theta\right)\right) \\
& =\frac{\pi}{2}-\theta
\end{aligned}
$$

(c) (i) We have $F_{x}=t \sin \theta=m r w^{2}, F_{y}=T \cos \theta+N-m g=0, N=m g-T \cos \theta$. To remain in contact, we need $N \geq 0$, and hence,

$$
m g-T \cos \theta \geq 0
$$

From our equation of F_{x}, we have

$$
\begin{gathered}
T=\frac{m r w^{2}}{\sin \theta} . \\
\therefore m g-\frac{m r w^{2} \cos \theta}{\sin \theta} \geq 0 .
\end{gathered}
$$

Now we need to eliminate $\sin \theta$. From our diagram, $\sin \theta=\frac{r}{l}$, hence

$$
m g-\frac{m r w^{2} \cos \theta}{\left(\frac{r}{l}\right)} \Longrightarrow m g-m l w^{2} \cos \theta \geq 0 \Longrightarrow w^{2} \leq \frac{g}{l \cos \theta}
$$

(d) (i) Since $P S$ is a distance between two points, then

$$
\begin{aligned}
P S & =\sqrt{(c p-0)^{2}+\left(\frac{c}{p}-\frac{c p+c q}{p q}\right)^{2}} \\
& =\sqrt{c^{2} p^{2}+\left(\frac{c p-c p-c q}{p q}\right)^{2}} \\
& =\sqrt{c^{2} p^{2}+\frac{c^{2}}{q^{2}}}
\end{aligned}
$$

Similarly, for $Q R$,

$$
\begin{aligned}
Q R & =\sqrt{(c(p+q)-c q)^{2}+\left(0-\frac{c}{q}\right)^{2}} \\
& =\sqrt{(c p+c q-c q)^{2}+\frac{c^{2}}{q^{2}}} \\
& =\sqrt{c^{2} p^{2}+\frac{c^{2}}{q^{2}}} \\
& =P S .
\end{aligned}
$$

(ii) Let A and B have coordinates $\left(x_{A}, y_{A}\right)$ and $\left(x_{B}, y_{B}\right)$ respectively.

Since M is the midpoint of $A B$,
$M=\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)$
Solving $x y=c^{2}$ and $y=t x-a t^{2}$ simultaneously,
$t x^{2}-a t^{2} x-c^{2}=0$
Since the tangent at T intersects $x y=c^{2}$ at A and B, the above quadratic in terms of x has roots x_{A} and x_{B}.
Considering the sum of roots,
$x_{A}+x_{B}=\frac{-\left(-a t^{2}\right)}{2}$

$$
=a t
$$

$\therefore \mathrm{X}_{M}=\frac{x_{A}+x_{B}}{2}=\frac{a t}{2}$ Sub $x_{M}=\frac{a t}{2}$ into $y=t x-a t^{2}$
$y_{M}=t x_{M}-a t^{2}$
$=\frac{a t^{2}}{2}-a t^{2}$
$y_{M}=\frac{-a t^{2}}{2}$
Since $x_{M}=\frac{a t}{2}, t=\frac{2 x_{M}}{a}$
$\therefore \mathrm{y}_{M}=-\frac{a}{2}\left(\frac{2 x_{M}}{a}\right)^{2}$
$y_{M}=\frac{-2 x_{M}^{2}}{a}$
$2 x_{M}^{2}=-a y_{M}$
$\therefore \mathrm{M}$ lies on the parabola $2 x^{2}=-a y$

Question 14

(a) $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2-\cos \theta}$

Suppose

$$
\begin{aligned}
t & =\tan \frac{\theta}{2} \\
d t & =\frac{1}{2} \sec ^{2} \frac{\theta}{2} d \theta \\
& =\frac{1}{2}\left(1+\tan ^{2} \frac{\theta}{2}\right) d \theta \\
& =\frac{1}{2}\left(1+t^{2}\right) d \theta \\
d \theta & =\frac{2}{1+t^{2}} d t
\end{aligned}
$$

We know that $\tan \theta=\frac{2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$

$$
=\frac{2 t}{1-t^{2}}
$$

Hence $\cos \theta=\frac{1-t^{2}}{1+t^{2}}$.
Now changing the borders,

$$
\begin{gathered}
\theta=0 \Longrightarrow t=0 \\
\theta=\frac{\pi}{2} \Longrightarrow t=1
\end{gathered}
$$

$$
\begin{aligned}
\therefore \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2-\cos \theta} & =\int_{0}^{1} \frac{\frac{2}{1+t^{2}} d t}{2-\frac{1-t^{2}}{1+t^{2}}} \\
& =\int_{0}^{1} \frac{\frac{2}{1+t^{2}} d t}{\frac{2+2 t^{-}-t^{2}}{1+t^{2}}} \\
& =\int_{0}^{1} \frac{2 d t}{1+3 t^{2}} \\
& =2 \int_{0}^{1} \frac{d t}{1+3 t^{2}} \\
& =2 \frac{1}{\sqrt{3}}\left[\tan ^{-1}(\sqrt{3} x)\right]_{0}^{1} \\
& =\frac{2}{\sqrt{3}}\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} 0\right) \\
& =\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}\right) \\
& =\frac{2 \pi}{3 \sqrt{3}}
\end{aligned}
$$

(b) Let the displacement of the particle be x. We will consider downwards as the positive direction.

$$
\begin{aligned}
\therefore \ddot{x} & =g-k v^{2} \\
\frac{v d v}{d h} & =g-k v^{2} \\
d h & =\frac{v d v}{g-k v^{2}} \\
-2 k d h & =\frac{-2 k v d v}{g-k v^{2}} \\
\int-2 k d h & =\int \frac{-2 k v d v}{g-k v^{2}} \\
-2 k h & =\ln \left(g-k v^{2}\right)+C
\end{aligned}
$$

Initially, the particle is at rest, so when $h=0, v=0$. Substituting these conditions in, we get

$$
\begin{aligned}
-2 k(0) & =\ln \left(g-k(0)^{2}\right)+C \\
C & =-\ln (g) .
\end{aligned}
$$

Substituting C back into our equation, we get

$$
\begin{aligned}
-2 k h & =\ln \left(g-k v^{2}\right)+C \\
& =\ln \left(g-k v^{2}\right)-\ln (g) \\
& =\ln \left(\frac{g-k v^{2}}{g}\right)
\end{aligned}
$$

$\ln \left(\frac{g-k v^{2}}{g}\right)=-2 k h$

$$
\begin{aligned}
\frac{g-k v^{2}}{g} & =e^{-2 k h} \\
1-\frac{k v^{2}}{g} & =e^{-2 k h} \\
\frac{k v^{2}}{g} & =1-e^{-2 k h} \\
v^{2} & =\frac{g}{k}\left(1-e^{-2 k h}\right) \\
v & = \pm \sqrt{\frac{g}{k}\left(1-e^{-2 k h}\right)}
\end{aligned}
$$

As the particle is falling downwards, then $v \geq 0$.

$$
\therefore v=\sqrt{\frac{g}{k}\left(1-e^{-2 k h}\right)}
$$

as required.
(c) (i)

$$
I_{n}=\int_{-3}^{0} x^{n} \sqrt{x+3} d x
$$

Using integration by parts,

$$
\begin{array}{rlrl}
u=x^{n} & d v & =(x+3)^{\frac{1}{2}} d x \\
d u=n x^{n-1} d x & v & =\frac{2}{3}(x+3)^{\frac{3}{2}} .
\end{array}
$$

$$
\begin{aligned}
\therefore I_{n} & =\left[\frac{2}{3} x^{n}(x+3)^{\frac{3}{2}}\right]_{-3}^{0}-\frac{2}{3} n \int_{-3}^{0} x^{n-1}(x+3)^{\frac{3}{2}} d x \\
& =\left[\frac{2}{3}(0)^{n}(3)^{\frac{3}{2}}-\frac{2}{3}(-3)^{n}(0)^{\frac{3}{2}}\right]-\frac{2}{3} n \int_{-3}^{0} x^{n-1}(x+3)^{\frac{3}{2}} d x \\
& =-\frac{2}{3} n \int_{-3}^{0} x^{n-1}(x+3)^{\frac{3}{2}} d x \\
& =-\frac{2}{3} n \int_{-3}^{0} x^{n-1}(x+3) \sqrt{x+3} d x \\
& =-\frac{2}{3} n\left(\int_{-3}^{0} x^{n} \sqrt{x+3} d x+3 \int_{-3}^{0} x^{n-1} \sqrt{x+3} d x\right) \\
& =-\frac{2}{3} n\left(I_{n}+I_{n-1}\right) \\
I_{n}\left(1+\frac{2}{3} n\right) & =-2 n I_{n-1} \\
I_{n} & =\frac{-2 n I_{n-1}}{1+\frac{2}{3} n} \\
& =\frac{-6 n I_{n-1}}{3+2 n}
\end{aligned}
$$

(ii) We know that

$$
I_{n}=\frac{-6 n I_{n-1}}{3+2 n}
$$

Substituting $n=2$, we get

$$
I_{2}=\frac{-6(2) I_{1}}{3+2(2)}=-\frac{12}{7} I_{1}
$$

Substituting $n=1$, we get

$$
I_{1}=\frac{-6(1) I_{0}}{3+2(1)}=-\frac{6}{5} I_{0}
$$

Now we will find I_{0} by substituting $n=0$ into

$$
I_{n}=\int_{-3}^{0} x^{n} \sqrt{x+3} d x
$$

which gives us

$$
\begin{aligned}
I_{0} & =\int_{-3}^{0} \sqrt{x+3} d x \\
& =\frac{2}{3}\left[(x+3)^{\frac{3}{2}}\right]_{-3}^{0} \\
& =\frac{2}{3} \cdot 3^{\frac{3}{2}} \\
& =\frac{2}{3} \cdot 3 \cdot \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

$$
\therefore I_{1}=-\frac{6}{5}(2 \sqrt{3})
$$

$$
=-\frac{12}{5} \sqrt{3}
$$

and hence,

$$
\begin{aligned}
I_{2}= & -\frac{12}{7} \cdot-\frac{12}{5} \sqrt{3} \\
& =\frac{144}{35} \sqrt{3}
\end{aligned}
$$

(d) (i) $\operatorname{Pr}(A$ wins n games $)=\left(\frac{1}{3}\right)^{n}$.
(ii) $\operatorname{Pr}(\mathrm{C}$ never wins $)=\operatorname{Pr}(\mathrm{A}$ and B wins n games $)$

$$
=\left(\frac{2}{3}\right)^{n}
$$

$$
\begin{aligned}
\operatorname{Pr}(A \text { or } B \text { wins all } n \text { games }) & =\left(\frac{1}{3}\right)^{n}+\left(\frac{1}{3}\right)^{n} \\
& =2\left(\frac{1}{3}\right)^{n}
\end{aligned}
$$

$\operatorname{Pr}(C$ never wins but A and B wins at least one $)=\left(\frac{2}{3}\right)^{n}-2\left(\frac{1}{3}\right)^{n}$
(iii) $\operatorname{Pr}($ Each player wins atleast one $)=1-\operatorname{Pr}($ One players wins all n games $)-\operatorname{Pr}($ Two player wins all n game

$$
\begin{aligned}
& =1-3 \cdot\left(\frac{1}{3}\right)^{n}-3\left(\left(\frac{2}{3}\right)^{n}-2\left(\frac{1}{3}\right)^{n}\right) \\
& =1-3\left(\frac{2}{3}\right)^{n}+3\left(\frac{1}{3}\right)^{n} \\
& =1-\frac{2^{n}}{3^{n-1}}+\frac{1}{3^{n-1}} \\
& =\frac{3^{n-1}-2^{n}+1}{3^{n-1}}
\end{aligned}
$$

Question 15

(a) (i) As $\angle A O B=\frac{\pi}{2}$, then the coordinates of B is given by

$$
B\left(a \cos \left(\theta+\frac{\pi}{2}\right), b \sin \left(\theta+\frac{\pi}{2}\right)\right) \Longrightarrow B(-a \sin \theta, a \cos \theta)
$$

The x-coordinate of Q is the same as the x-coordinate of B (as Q is vertically above B). Now to find the y-coordinate of Q, we sub $x=-a \sin \theta$ into the equation of the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. We get

$$
\frac{a^{2} \sin ^{2} \theta}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Longrightarrow \frac{y^{2}}{b^{2}}=1-\sin ^{2} \theta=\cos ^{2} \theta \Longrightarrow y= \pm b \cos \theta
$$

As $y>0$ (from the diagram), the y-coordinate of Q is $y=b \cos \theta$, and hence,

$$
B(-a \sin \theta, b \cos \theta)
$$

as required.
(ii) Let the angle between $O P$ and the positive x-axis be α. Then

$$
\tan \alpha=\frac{b \sin \theta}{a \cos \theta}=\frac{b}{a} \cdot \tan \theta \Longrightarrow \alpha=\tan ^{-1}\left(\frac{b}{a} \cdot \tan \theta\right) .
$$

Let the angle between $O Q$ and the negative x-axis be β. Then

$$
\tan \beta=\frac{b \cos \theta}{a \sin \theta}=\frac{b}{a} \cdot \frac{1}{\tan \theta} \Longrightarrow \beta=\tan ^{-1}\left(\frac{b}{a} \cdot \frac{1}{\tan \theta}\right)
$$

Let the angle between $O Q^{\prime}$ and the positive x-axis be γ. Note that $\beta=\gamma$ (vertically opposite angles are equal). Now we want to find $\angle P O Q^{\prime}$. From the diagram,

$$
\begin{aligned}
\angle P O Q^{\prime} & =\alpha+\gamma \\
& =\alpha+\beta \quad(\operatorname{as} \beta=\gamma) \\
& =\tan ^{-1}\left(\frac{b}{a} \cdot \tan \theta\right)+\tan ^{-1}\left(\frac{b}{a} \cdot \frac{1}{\tan \theta}\right) \\
\tan \left(\angle P O Q^{\prime}\right) & =\tan \left(\tan ^{-1}\left(\frac{b}{a} \cdot \tan \theta\right)+\tan ^{-1}\left(\frac{b}{a} \cdot \frac{1}{\tan \theta}\right)\right) \\
& =\frac{\tan \left(\tan ^{-1}\left(\frac{b}{a} \cdot \tan \theta\right)\right)+\tan \left(\tan ^{-1}\left(\frac{b}{a} \cdot \frac{1}{\tan \theta}\right)\right)}{1-\tan \left(\tan ^{-1}\left(\frac{b}{a} \cdot \tan \theta\right)\right) \cdot \tan \left(\tan ^{-1}\left(\frac{b}{a} \cdot \frac{1}{\tan \theta}\right)\right)} \\
& =\frac{\frac{b}{a} \cdot \tan \theta+\frac{b}{a} \cdot \frac{1}{1-\frac{b}{a} \cdot \tan \theta}+\frac{b}{a} \cdot \frac{1}{\tan \theta}}{1-\frac{b^{2}}{a^{2}}} \\
& =\frac{\frac{b}{a}\left(\tan \theta+\frac{1}{\tan \theta}\right)}{a^{2}-b^{2}} \\
& =\frac{a b\left(\tan \theta+\frac{1}{\tan \theta}\right)}{a^{2}} \\
\angle P O Q^{\prime} & =\tan ^{-1}\left(\frac{a b\left(\tan \theta+\frac{1}{\tan \theta}\right)}{a^{2}-b^{2}}\right)
\end{aligned}
$$

Now to minimise $\angle P O Q^{\prime}$, we must minimise $\tan \theta+\frac{1}{\tan \theta}$. To minimise this, we will consider the AM-GM inequality

$$
\frac{x+y}{2} \geq \sqrt{x y} .
$$

Substituting $x=\tan \theta$ and $y=\frac{1}{\tan \theta}$, we get

$$
\frac{\tan \theta+\frac{1}{\tan \theta}}{2} \geq \sqrt{\tan \theta \cdot \frac{1}{\tan \theta}}=1 \Longrightarrow \tan \theta+\frac{1}{\tan \theta} \geq 2
$$

Therefore the minimal value of $\tan \theta+\frac{1}{\tan \theta}$ is 2 . Hence the minimum size of $\angle P O Q^{\prime}$ is

$$
\tan ^{-1}\left(\frac{2 a b}{a^{2}-b^{2}}\right) .
$$

(b) (i) Using de Moivre's theorem,

$$
(\cos \theta+i \sin \theta)^{8}=\cos 8 \theta+i \sin 8 \theta
$$

Using the binomial theorem,

$$
(\cos \theta+i \sin \theta)^{8}=\sum_{k=0}^{8}\binom{8}{k}(\cos \theta)^{8-k}(i \sin \theta)^{k}
$$

Equating these,

$$
\cos 8 \theta+i \sin 8 \theta=\sum_{k=0}^{8} i^{k}\binom{8}{k} \cos ^{8-k} \theta \sin ^{k} \theta
$$

Since $i^{2}=-1$, only even powers of i are real, meaning odd powers of i are not real. Then equating imaginary parts above and using $i=i, i^{3}=-i, i^{5}=i, i^{7}=-i$,

$$
\sin 8 \theta=\binom{8}{1} \cos ^{7} \theta \sin \theta-\binom{8}{3} \cos ^{5} \theta \sin ^{3} \theta+\binom{8}{5} \cos ^{3} \theta \sin ^{5} \theta-\binom{8}{7} \cos \theta \sin ^{7} \theta
$$

(ii) Note $\binom{8}{1}=\binom{8}{7}=8$ and $\binom{8}{3}=\binom{8}{5}=56$. Then, dividing the result in (i) by $\sin 2 \theta$,

$$
\begin{aligned}
\frac{\sin 8 \theta}{\sin 2 \theta} & =\frac{8 \cos ^{7} \theta \sin \theta-56 \cos ^{5} \theta \sin ^{3} \theta+56 \cos ^{3} \theta \sin ^{5} \theta-8 \cos \theta \sin ^{7} \theta}{\sin 2 \theta} \\
& =\frac{8 \cos ^{7} \theta \sin \theta-56 \cos ^{5} \theta \sin ^{3} \theta+56 \cos ^{3} \theta \sin ^{5} \theta-8 \cos \theta \sin ^{7} \theta}{2 \sin \theta \cos \theta} \text { (double angle) } \\
& =4 \cos ^{6} \theta-28 \cos ^{4} \theta \sin ^{2} \theta+28 \cos ^{2} \theta \sin ^{4} \theta-\sin ^{6} \theta \\
& =4\left(\left(1-\sin ^{2} \theta\right)^{3}-7\left(1-\sin ^{2} \theta\right)^{2} \sin ^{2} \theta+7\left(1-\sin ^{2} \theta\right) \sin ^{4} \theta-\sin ^{6} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta=1\right) \\
& =4\left(\left(\sin ^{6} \theta\right)(-1-7-7-1)+\left(\sin ^{4} \theta\right)(3-7(-2)+7)+\left(\sin ^{2} \theta\right)(-3-7)+1\right) \\
& =4\left(1-10 \sin ^{2} \theta+24 \sin ^{4} \theta-16 \sin ^{6} \theta\right)
\end{aligned}
$$

(c) (i) $x^{n}-1-n(x-1)=(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}\right)-n(x-1)$

$$
=(x-1)\left(\left(1+x+x^{2}+\cdots+x^{n-1}\right)-n\right)
$$

(ii) It is sufficient to prove that $(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}-n\right) \geq 0$.

- Case 1: $x<1$.

Then $x-1<0$ and each of the terms x^{i} will be less than 1 . Then $1+x+x^{2}+\cdots+x^{n-1}<$ $\underbrace{1+1+\cdots+1}_{n \text { times }}=n$, so

$$
1+x+x^{2}+\cdots+x^{n-1}-n<0
$$

As both the terms $(x-1)$ and $\left(1+x+x^{2}+\cdots+x^{n-1}-n\right.$ are negative, their product $(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}-n\right)$ is positive.

- Case 2: $x \geq 1$.

Then $x-1>0$.
Also, for $x>1$, then $x^{i}>1$ for $1<i<n$. Then the sum $1+x+x^{2}+\cdots+x^{n-1}>$ $\underbrace{1+1+\cdots+1}_{n \text { times }}=n$, so

$$
1+x+x^{2}+\cdots+x^{n-1}-n>0
$$

As both the terms $(x-1)$ and $\left(1+x+x^{2}+\cdots+x^{n-1}-n\right.$ are positive, their product ($x-$ 1) $\left(1+x+x^{2}+\cdots+x^{n-1}-n\right)$ is positive.

In both cases, we have proved that $(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}-n\right) \geq 0$. Hence

$$
\begin{aligned}
x^{n}-1-n(x-1) & \geq 0 \\
x^{n} & \geq 1+n(x-1)
\end{aligned}
$$

(iii) Method 1: Let $x=a b^{-1}$.

$$
\begin{aligned}
a^{n} b^{-n} & \geq 1+n\left(\frac{a}{b}-1\right) \\
a^{n} b^{1-n} & \geq b+n(a-b) \\
& =b+n a-n b \\
& =n a+(1-n) b
\end{aligned}
$$

Question 16

(a)

$$
x^{\left(3^{n}\right)}-1=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) \cdots\left(x^{\left(2 \times 3^{n-1}\right)}+x^{\left(3^{n-1}\right)}+1\right)
$$

First, we will prove that the statement holds true for $n=1$. Letting $n=1$, we get

$$
\begin{aligned}
\text { LHS } & =x^{\left(3^{1}\right)}-1 \\
& =x^{3}-1 \\
\text { RHS } & =(x-1)\left(x^{2}+x+1\right) \\
& =x^{3}-1 \\
& =\text { LHS. }
\end{aligned}
$$

As LHS $=$ RHS, the statement holds true for $n=1$.
We will assume that the statement holds true for $n=k$, that is,

$$
x^{\left(3^{k}\right)}-1=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) \cdots\left(x^{\left(2 \times 3^{k-1}\right)}+x^{\left(3^{k-1}\right)}+1\right) .
$$

Now we will prove that the statement holds true for $n=k+1$, that is,

$$
\begin{aligned}
& x^{\left(3^{k+1}\right)}-1=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) \cdots\left(x^{\left(2 \times 3^{k-1}\right)}+x^{\left(3^{k-1}\right)}+1\right)\left(x^{\left(2 \times 3^{k}\right)}+x^{\left(3^{k}\right)}+1\right) . \\
& \text { LHS }=x^{\left(3^{k+1}\right)}-1 \\
&=x^{\left(3^{k} \times 3\right)}-1 \\
&=\left(x^{\left(3^{k}\right)}\right)^{3}-1 \\
&=\underbrace{\left(x^{\left(3^{k}\right)}-1\right)}_{\text {assumption }}\left(\left(x^{\left(3^{k}\right)}\right)^{2}+x^{\left(3^{k}\right)}+1\right) \\
&=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) \cdots\left(x^{\left(2 \times 3^{k-1}\right)}+x^{\left(3^{k-1}\right)}+1\right)\left(\left(x^{\left(3^{k}\right)}\right)^{2}+x^{\left(3^{k}\right)}+1\right) \\
&=(x-1)\left(x^{2}+x+1\right)\left(x^{6}+x^{3}+1\right) \cdots\left(x^{\left(2 \times 3^{k-1}\right)}+x^{\left(3^{k-1}\right)}+1\right)\left(x^{\left(2 \times 3^{k}\right)}+x^{\left(3^{k}\right)}+1\right) \\
&=\operatorname{RHS}
\end{aligned}
$$

As our statement holds true for $n=k+1$, we have completed the proof by induction.
(b) (i) As $B A$ is parallel to $H I$, then $\triangle A B C$ is similar to $\triangle I H C$. Hence, we can say that

$$
\frac{B C}{H C}=\frac{B A}{H I}=\sqrt{2} \quad \text { (corresponding sides of similar triangles are equal). }
$$

Similarly, as $F G$ is parallel to $C A$, then

$$
\begin{gathered}
\frac{B C}{B F}=\frac{C A}{F G}=\sqrt{2} \quad \text { (corresponding sides of similar triangles are equal). } \\
\therefore \frac{B C}{H C}=\frac{B C}{B F} \Longrightarrow H C=B F .
\end{gathered}
$$

As $H C=H F+F C$ and $B F=B H+H F$, then

$$
H F+F C=B H+H F \Longrightarrow B H=F C
$$

Since $D E$ is parallel to $B C, F G$ is parallel to $C A$ and $H I$ is parallel to $B A$, then $B D Y H$ and $C E Z F$ are parallelograms. In $B D Y H, B H=D Y$ and in $C E Z F, F C=Z E$. Thus,

$$
B H=F C \Longrightarrow D Y=Z E
$$

as required.
(ii) Let $B H=F C=D Y=Z E=x$. Then

$$
\begin{gathered}
B C=B H+H F+F C=2 x+H F, \\
H C=H F+F C=x+H F, \\
D E=D Y+Y Z+Z E=2 x+Y Z .
\end{gathered}
$$

From (i),

$$
\begin{aligned}
\frac{B C}{H C} & =\sqrt{2} \\
\frac{2 x+H F}{x+H F} & =\sqrt{2} \\
2 x+H F & =\sqrt{2} x+\sqrt{2} S F \\
H F & =\frac{(2-\sqrt{2}) x}{\sqrt{2}-1} \\
& =\sqrt{2} x .
\end{aligned}
$$

$$
\therefore B C=2 x+\sqrt{2} x=(2+\sqrt{2}) x .
$$

Also, we were given that

$$
\frac{B C}{D E}=\sqrt{2} .
$$

$$
\begin{aligned}
\therefore \frac{2 x+\sqrt{2} x}{2 x+Y Z} & =\sqrt{2} \\
2 x+\sqrt{2} x & =2 \sqrt{2} x+\sqrt{2} Y Z \\
Y Z & =\frac{(2-\sqrt{2}) x}{\sqrt{2}} \\
& =(\sqrt{2}-1) x
\end{aligned}
$$

$$
\therefore \frac{Y Z}{B C}=\frac{(\sqrt{2}-1) x}{(2+\sqrt{2}) x}=\frac{\sqrt{2}-1}{2+\sqrt{2}}=\frac{3 \sqrt{2}-4}{2}
$$

(c) $p(x)=x^{3}+p x+q, p, q$ real, $q \neq 0$, zeroes α, β, γ.
(i) Using relationships between roots and coefficients, we know that

$$
\begin{aligned}
\alpha+\beta+\gamma & =0 \\
\alpha \beta+\beta \gamma+\alpha \gamma & =p \\
\alpha \beta \gamma & =-q .
\end{aligned}
$$

Then consider

$$
\begin{aligned}
(\beta-\gamma)^{2} & =\beta^{2}+\gamma^{2}-2 \beta \gamma \\
& =\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-\alpha^{2}-2 \cdot \frac{\alpha \beta \gamma}{\alpha} \\
& =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-\alpha^{2}-2 \cdot \frac{-q}{\alpha} \\
& =-2 p-\alpha^{2}+\frac{2 q}{\alpha} .
\end{aligned}
$$

We now need to eliminate p from the expression but require only α terms in the expression, so we don't use sum of roots 2 at a time again. Instead, note $p(\alpha)=0$ as α is a zero.

$$
\begin{aligned}
\alpha^{3}+p \alpha+q & =0 \\
p & =-\frac{q}{\alpha}-\alpha^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
(\beta-\gamma)^{2} & =-2\left(-\frac{q}{\alpha}-\alpha^{2}\right)-\alpha^{2}+\frac{2 q}{\alpha} \\
& =\alpha^{2}+\frac{4 q}{\alpha} .
\end{aligned}
$$

(ii) We can further show

$$
\begin{aligned}
(\beta-\gamma)^{2} & =\alpha^{2}+\frac{4 q}{\alpha} \\
& =\frac{\alpha^{3}+4 q}{\alpha} \\
& =\frac{(-p \alpha-q)+4 q}{\alpha}(\text { as } p(\alpha)=0) \\
& =-p+\frac{3 q}{\alpha}
\end{aligned}
$$

A similar result applies to $(\alpha-\beta)^{2}$ and $(\gamma-\alpha)^{2}$ we know that the roots of the equation of interest can be rewritten as $-p+\frac{3 q}{\alpha},-p+\frac{3 q}{\beta},-p+\frac{3 q}{\gamma}$.
Set $y=-p+\frac{3 q}{x}$ so $x=\frac{3 q}{y+p}$. Then using $p(x)=0$, we have

$$
\begin{aligned}
\left(\frac{3 q}{y+p}\right)^{2}+p\left(\frac{3 q}{y+p}\right)+q & =0 \\
\times(y+p)^{3} \div q: \quad 27 q^{2}+3 p(y+p)^{2}+(y+p)^{3} & =0
\end{aligned}
$$

The roots of this equation are $y=(\alpha-\beta)^{2},(\beta-\gamma)^{2},(\gamma-\alpha)^{2}$.
Taking product of roots,

$$
\begin{aligned}
(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2} & =-\frac{\text { constant term }}{\text { leading coefficient }} \\
& =-\frac{27 q^{2}+3 p \cdot p^{2}+p^{3}}{1} \\
& =-\left(27 q^{2}+4 p^{3}\right)
\end{aligned}
$$

(iii) If $27 q^{2}+4 p^{3}<0$ then

$$
(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}=-\left(27 q^{2}+4 p^{3}\right)
$$

$$
>0
$$

Firstly, note from this that

$$
(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2} \neq 0
$$

which means that $\alpha \neq \beta, \beta \neq \gamma$, and $\gamma \neq \alpha$. In other words, no 2 zeroes of $p(x)=0$ are equal so all 3 zeroes are distinct.
Next, because $p(x)$ has coefficients that are all real, any non-real roots must occur in conjugate pairs, so there are either 3 real distinct roots or 1 real root with 2 conjugate complex roots.
If we suppose we had non-real roots $\beta=a+i b$ and $\gamma=a-i b(a, b$ real) then

$$
\begin{aligned}
(\alpha-\beta)^{2}(\alpha-\gamma)^{2}(\beta-\gamma)^{2} & =(\alpha-(a+i b))^{2}(\alpha-(a-i b))^{2}((a+i b)-(a-i b))^{2} \\
& =((\alpha-(a+i b))(\alpha-(a-i b)))^{2}(2 i b)^{2} \\
& =-\left(\alpha^{2}-2 \alpha+\left(a^{2}+b^{2}\right)\right)^{2}\left(4 b^{2}\right) \\
& <0 .
\end{aligned}
$$

The inequality arises because squares of real numbers are non-negative. However, the sign of the expression is given to be positive, so we cannot have any non-real roots. Therefore, $p(x)=0$ has 3 real distinct zeroes if $27 q^{2}+4 p^{3}<0$.

