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Verducci, Joseph S., Vincent F. Melfi, Shili Lin, Zailong Wang, Sashwati
Roy, and Chandan K. Sen. Microarray analysis of gene expression: considerations
in data mining and statistical treatment. Physiol Genomics 25: 355–363, 2006. First
published March 22, 2006; doi:10.1152/physiolgenomics.00314.2004.—DNA mi-
croarray represents a powerful tool in biomedical discoveries. Harnessing the
potential of this technology depends on the development and appropriate use of
data mining and statistical tools. Significant current advances have made microar-
ray data mining more versatile. Researchers are no longer limited to default choices
that generate suboptimal results. Conflicting results in repeated experiments can be
resolved through attention to the statistical details. In the current dynamic envi-
ronment, there are many choices and potential pitfalls for researchers who intend to
incorporate microarrays as a research tool. This review is intended to provide a
simple framework to understand the choices and identify the pitfalls. Specifically,
this review article discusses the choice of microarray platform, preprocessing raw
data, differential expression and validation, clustering, annotation and functional
characterization of genes, and pathway construction in light of emergent concepts
and tools.
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DNA MICROARRAY REPRESENTS a powerful tool in biomedical
discoveries. This review article discusses the choice of mi-
croarray platform, preprocessing raw data, differential expres-
sion and validation, clustering, annotation and functional char-
acterization of genes, and pathway construction in light of
emergent concepts and tools (Fig. 1).

BENEFITS AND SHORTCOMINGS OF
MICROARRAY ANALYSIS

The advent of the cDNA and oligonucleotide microarray
accelerated the rate of discovery of genetic interplay by simul-
taneously monitoring thousands of genes in a single experi-
ment (12, 63). This systemic approach is valuable to identify
novel mechanisms in the regulation and production of proteins
and to refine our understanding of known pathways in the
context of proteomics and the metabolome (2, 9, 27). Microar-
ray analysis also supports the discovery of drug-sensitive genes
and the chemical substructures associated with specific genetic

responses (20). Current clinical applications include the devel-
opment of biomarkers for classification into disease subgroups
and the monitoring of disease progression (33, 49, 62). On the
other hand, attempts to reproduce expression values using
different microarray platforms with the same samples, or the
same platform with similar samples, or even pure technical
replicates (the same platform with split samples), have dem-
onstrated poor overall reliability (3, 4). Whatever information
is embedded in a microarray experiment appears to be entan-
gled in a complex mix of various types of noise. This has
caused some researchers to call for establishing industrial
manufacturing standards and further independent and thorough
validation of the technology. Others welcome the diversity of
platforms and analytic methods as complementary forms of
discovery, relying on alternative PCR-based technologies for
validation of expression levels. Lack of a robust and reliable
data analysis platform represents the single most important
limiting factor in microarray analysis. In the current environ-
ment, there are many choices and potential pitfalls for re-
searchers who intend to incorporate microarrays as a tool to
monitor global gene expression patterns. This review is in-
tended to provide a framework to understand the choices and
identify the pitfalls. Unless otherwise specified, all reference to
microarrays in this article refers to oligonucleotide or cDNA
microarrays.
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CHOICE OF PLATFORM

Gene microarray systems differ in terms of material used
(short oligonucleotides, long oligonucleotides, or cDNA) and
number of samples per array (single-channel or 2-channel).
Oligonucleotide arrays typically are used for genome-wide
(tens of thousands of genes) screening and cDNA arrays for the
investigation of smaller sets of genes. Links to twenty-eight
companies supplying off-the-shelf and custom array services
may be found at St. George’s University of London bioinfor-
matics web site, http://www.sgul.ac.uk/depts/medmicro/
ArrayLinkDB.htm. Companies differ widely in their recom-
mendations for sample preparation, imaging conditions, and
preprocessing of raw data. Caution is warranted not only for
designing settings to compare different systems but also to
ensure reliability of a single system. Use of a single system in
multicenter trials is beginning to demonstrate reliable and
generalizable findings. In 2002, Kuo et al. (34) compared
mRNA measurements of 2,895 sequence-matched genes in 56
cell lines from the standard panel of 60 cancer cell lines from
the National Cancer Institute (NCI 60) by calculating the
correlation between matched measurements and calculating
concordance between clusters from two high-throughput DNA
microarray technologies, Stanford type cDNA microarrays and
Affymetrix oligonucleotide microarrays. In general, corre-
sponding measurements from the two platforms showed poor
correlation. Clusters of genes and cell lines were discordant
between the two technologies, suggesting that relative intra-
technology relationships were not preserved. GC content, se-

quence length, average signal intensity, and an estimator of
cross-hybridization were found to be associated with the de-
gree of correlation. This suggests gene-specific or, more cor-
rectly, probe-specific factors influencing measurements differ-
ently in the two platforms, implying a poor prognosis for a
broad utilization of gene expression measurements across plat-
forms. Gene expression measurements generated from identi-
cal RNA preparations from human panc-1 pancreatic cancer
cells that were obtained using three commercially available
microarray platforms have been compared (57). Three biolog-
ical replicates were prepared for each of two serum growth
conditions, and three experimental replicates were produced
for the first biological replicate. RNA was labeled and hybrid-
ized to microarrays from three major suppliers according to
manufacturers’ protocols, and gene expression measurements
were obtained using each platform’s standard software. For
each platform, gene targets from a subset of 2,009 common
genes were compared. Correlations in gene expression levels
and comparisons for significant gene expression changes in this
subset were calculated and showed considerable divergence
across the different platforms (57).

Seven of the most popular platforms for microarray analysis,
including Codelink, Affymetrix, Agilent, NimbleGen, Applied
Biosystems, Febit, and custom-made cDNA spotted arrays,
have been scrutinized side by side (24). The widely different
approaches to measuring gene expression produced disparate
estimates. Hardiman (24) recommends the use of meta-analysis
techniques when attempting cross-platform integration of data.
In a similar study (30) of four of these platforms, it was
observed that

clone errors [on the custom-made microarrays], annotation
differences, and technical differences between the platforms
may be so significant that they exceed the biological differ-
ences between gene expression patterns in samples whose
expression profiles are relatively similar.

In a study of genes encoding transporters and ion channel, it
was noted that the cDNA and Affymetrix arrays correlate well
over those genes that are abundantly expressed, but there is
very little agreement about differential expression when ob-
serving relatively low levels of expression (35). Recently, more
positive results are beginning to appear. Short oligonucleotide
(25- to 30-base), long oligonucleotide (50- to 80-base), and
cDNA (highly variable in length) formats have been compared
with test RNA samples from six different cell lines against a
universal reference standard (47). The three platforms had
6,430 genes in common. The study noted that correlation of
gene expression levels across the platforms was good if the
criterion is the direction of change in gene expression and
minimal emphasis is placed on the magnitude of change (47).
Recently, lung adenocarcinoma expression data from four
laboratories have been compared (17). To test the feasibility of
combining data across laboratories, frozen tumor tissues, cell
line pellets, and purified RNA samples were analyzed at each
of the four laboratories. Samples of each type and several
subsamples from each tumor and each cell line were blinded
before being distributed. The laboratories followed a common
protocol for all steps of tissue processing, RNA extraction, and
microarray analysis using Affymetrix Human Genome U133A
arrays. High within-laboratory and between-laboratory corre-
lations were observed on the purified RNA samples, the cell

 

Fig. 1. Statistical analysis of microarray data: general approach.
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lines, and the frozen tumor tissues. Intraclass correlation within
laboratories was only slightly stronger than between laborato-
ries, and the intraclass correlation tended to be weakest for
genes expressed at low levels and showing small variation
(17). Hierarchical cluster analysis revealed that the repeated
samples clustered together regardless of the laboratory in
which the experiments were performed. These findings indi-
cate that, under properly controlled conditions, it is feasible to
perform complete microarray analysis, from tissue processing
to hybridization and scanning, at multiple independent labora-
tories for a single study (17).

PREPROCESSING RAW DATA

Microarrays are imaged using an optical scanner. These
images must then be subjected to background correction to
adjust for nonspecific binding, fluorescence from other chem-
icals on the slide, and the like. In the next preprocessing steps,
the background-corrected data are normalized to adjust for
differences that are not biological in nature but are due to the
technology (e.g., dye effects) and summarized, so that the
normalized values of multiple probes for the same gene are
combined into a single value representing the consensus level
of expression for that gene. After preprocessing, additional
steps are taken to determine which genes are differentially
expressed, to search for clusters of genes (or subjects) with
similar gene expression patterns, and to annotate the differen-
tially expressed genes with a functional assessment. Often,
relational databases are then used to identify pathway compo-
nents compatible with the observed patterns of expression.

Background correction and normalization. DNA microar-
rays often contain multiple probes for each gene. The probes
are typically scattered over the surface of the microarray
hardware. Variations in intensity from probe to probe or chip to
chip for the same sample need to be resolved into a reliable
level of expression. Observed intensities are sometimes mod-
ified based on comparison with nearby background probes
whose expression is theoretically known. For cDNA microar-
rays, background adjustment is controversial, since, although it
can reduce bias, it can also increase variance. See Scharpf et al.
(54) for discussion of the bias-variance tradeoff and Smyth et
al. (56) for a description of some of the commonly used
background adjustment methods. For Affymetrix arrays, each
gene probe has a single-nucleotide mismatch probe mate. The
Microarray Suite (MAS) 5.0 method of Affymetrix, which uses
paired probes for adjustment, and the robust multichip average
(RMA) method (8), which uses quantile adjustment, are both in
common practice. The recently developed GC RMA method
pools probes with comparable numbers of G-C bonds to
achieve a stable mismatch adjustment (64).

Microarray data can be quite noisy. Much of the variation in
intensity levels can arise from technical rather than biological
causes. Nonbiological sources of variation can be introduced
during sample preparation (e.g., dye effects), array manufac-
ture (e.g., probe concentration), and hybridization (e.g.,
amount of sample) and in the measurement process (e.g.,
scanner inaccuracies) (25). The possible sources of obscuring
variation have been reviewed recently (25). Some biological
sources of bias, such as comparison of in vivo with in vitro
samples, may call for special adjustment. Hence, it is important
to normalize data, as much as possible, to remove the technical

variation while still retaining the informative biological varia-
tion. Normalization is performed both within each array and
between arrays to make comparisons more meaningful. Al-
though normalization is somewhat ad hoc, there are two basic
ideas that are relevant to all microarray normalizations. First,
the normalization method must be tailored to the microarray
platform (8, 50, 52, 53, 66). Normalization of cDNA arrays is
quite different from normalization of Affymetrix arrays, both
in the sources of variation to be removed and in the algorithms.
Second, linear normalization methods often miss obscuring
variation that can be removed, so nonlinear methods should be
used (8, 41, 66).

DIFFERENTIAL EXPRESSION AND VALIDATION

Differential expression. Identifying genes that are differen-
tially expressed under two or more treatment conditions is a
primary goal of most microarray studies. The two main issues
in assessing differential expression are determining a method
for assessing the extent of differential expression (e.g., fold
change, t-test, ANOVA) and adjusting the method for the
effects of multiple comparisons, since typically there are thou-
sands of genes being studied. Differential expression is tradi-
tionally approached one gene at a time (e.g., fold change, t-test,
ANOVA). One important point is the weakness of relying on
fold change as the sole criterion, since fold change does not
take into account the variability in the data. This can lead to
two problems. First, genes with low expression levels yet large
fold changes and high variability may be identified as differ-
entially expressed. Second, genes that display small but repro-
ducible (i.e., low variability) changes in gene expression may
be missed. There have been some efforts to incorporate vari-
ability in methods that rely on fold change (41), but these still
suffer from difficulties in assessing the error rates. Also,
empirical Bayes methods that shrink individual estimates of
variance toward a common value have been suggested for
improving the behavior of t-statistics in the many gene settings
(19). Recently, a number of high-dimensional methods have
been proposed to use covariance structure to assist in identi-
fying differentially expressed genes. These include elastic net
(68), gradient-directed regularization (21), and multiple for-
ward search (44). Shrunken centroid ordering by orthogonal
projections (SCOOP) is a new method still under testing, with
R code available from J. S. Verducci.

Multiple comparisons and false discovery rate. The issue of
multiple comparisons is more complex. Ideally, the probability
of a false positive (a gene incorrectly identified as differentially
expressed) should be small, and the probability of correctly
identifying genes that are differentially expressed should be
large. Standard statistical methods are set up to balance these
goals in the context of only one comparison, i.e., if the
microarray contained only one gene. Without adjustment, stan-
dard statistical methods give incorrect results in the context of
microarray data. For example, consider a microarray study
with m genes, and suppose none is differentially expressed. For
various values of m, the probability that a standard statistical
tool set to reject the null hypothesis if a P value is �0.05 will
yield at least one false positive is given in Table 1. Because
most microarrays contain thousands of genes, standard statis-
tical methods are clearly unacceptable.
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The Bonferroni method is a simple method to correct for
multiple testing that is still widely used in microarray data
analysis (43). This method just divides the P value cutoff by
the number of genes m. For example, if the probability of at
least one false positive is to be limited to 0.01, and there are
m � 5,000 genes on the array, the Bonferroni method would
identify a gene as differentially expressed if its P value was
�0.01/5,000 � 0.000002. Although this method is quite gen-
erally applicable, it is usually not a good choice for microarray
studies because it has very low power, i.e., the probability of
correctly identifying differentially expressed genes is very
small, so many potentially interesting genes may be missed.
For this and other reasons, different criteria than the probability
of at least one false positive have been advocated. The most
promising of these is the false discovery rate (FDR) (7, 65).
FDR is the expected proportion of false positives among all
rejected hypotheses. Instead of trying to avoid any false posi-
tives, the FDR controls the proportion of positive calls that are
false positives. Designing procedures to control the FDR is
challenging. The original technique of Benjamini and Hoch-
berg (6), to control the FDR at level �, works as follows. First,
P values are computed for each of the m genes, and the P
values are ordered from smallest to largest. Second, the ordered
P values are plotted vs. their rank along with the line with slope
�/m and intercept zero. The last P value, say P*, that lies below
the line is noted. This value (P*) is used to reject the hypoth-
eses corresponding to all P values less than or equal to P*. The
Benjamini-Hochberg procedure has been shown to control the
FDR under certain assumptions on the dependence structure of
the genes’ expression levels (6). The procedure is in wide use
and is recommended by the American Physiological Society
(13). Unfortunately, there are many microarray studies not
covered by the assumptions underlying the Benjamini-Hoch-
berg algorithm. Thus there is much work in the statistical
community aimed at developing a method of controlling the
FDR that is more generally applicable than the original Ben-
jamini-Hochberg method. A promising method that relies on
the bootstrap technique has been recently analyzed (48, 60,
61). However, this method achieves the FDR asymptotically.
Thus it is not suitable for studies involving small numbers
(e.g., 4–5) of arrays.

Determining sample size needed to control FDR. In planning
an experiment, there are two major decisions to make about
microarrays: 1) the total number of microarrays that should be
used and 2) the proportion that will be used for biological vs.
technical replication. The first decision is typically based on
budget and the second on the reliability of the microarrays
being used. The real question is whether a planned experiment
has a realistic chance of detecting and identifying important
biological processes. Recently, a decision theoretic procedure

was introduced (46) where a typical loss function is a weighted
sum of the FDR and its counterpart false negative rate (FNR).
The idea is to plot the expected loss vs. sample size and judge
whether a desired value can be achieved with a realistic sample
size. The expected loss is estimated through simulating expres-
sion data and recording the behavior of the Benjamini-Hoch-
berg method.

CLUSTERING GENES AND CASES

Heat map represents a common approach to present gene
expression data. This is an array where, typically, genes index
the rows, and chips index the columns (Fig. 2). Chips may
represent either different subjects or the same subject under
different conditions. The array itself is color coded to display
the, usually normalized, level of expression. The variation of
colors along any row is called the expression pattern of the
associated gene. If the genes in the array are arbitrarily ordered,
it is difficult to perceive patterns in the heat map. The simplest
remedy is to sort the genes in such a way that two genes with
similar expression patterns are close together. Hierarchical
procedures begin by putting each individual into its own group,
combining the two closest, combining the next two closest, and
so on. This requires a measure of closeness between groups of
individuals. Such measures are constructed by specifying a
metric between individuals and a procedure of using this metric
to induce a distance between two groups. For example, the
Manhattan distance between two genes is the sum of absolute
values of the difference in expression on each microarray. The
complete linkage method of induction defines the distance
between two groups as the largest metric distance between two
individuals, one from each group. Different metrics and pro-
cedures may produce different blocks of patterns. The efficacy
of standard clustering algorithms in identifying clear patterns
has been reviewed (10, 11, 23, 42, 58).

A recently proposed method, called hierarchical ordered
partitioning and collapsing hybrid (HOPACH), alternates the
“top down” method of partitioning with the “bottom up”
method of agglomeration to produce clusters that are reliably
reproduced when subjects are resampled or experiments are
replicated (51). The ultimate criterion for clustering is whether
clustered genes tend to act in conjunction with each other. As
an alternative to searching through dozens of possible cluster-
ing combinations, a new approach is to append additional
information to the expression matrix before attempting to
cluster genes. The additional information may be an important
aspect of the expression matrix, for example the difference in
mean expression between low and high oxygenation experi-
ments, or external information such as gene functioning cate-
gories. This method of appending onto expression matrices
may afford a stronger aid to identifying relevant gene families
and/or pathways, or may just simplify the heat map. Although
appending genes with functional categories may yield func-
tionally interpretable groupings, it does not help all that much
in identifying different pathways, since, for example, all active
transcription factors tend to be clustered together even if they
are operating in disjoint networks. Moreover, a single gene
may be a functional part of more than one network or pathway,
but traditional clustering methods allow a gene to be included
in only one cluster. Plaid models (36) represent an attempt to
handle multiple-group membership of genes. Regularized col-

Table 1. Probability of at least one false positive increases
rapidly as the no. m of hypotheses increases

m
Probability of At Least

One False Positive

1 0.05
10 0.40
50 0.92

100 0.994
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oring patterns are imposed in layers, which ideally represent
independent networks. Each layer is color coded, with intensity
of that color being proportional to the expression level attrib-
utable to activity in that layer. When the layers are overlaid, the
result is a plaid pattern (39). To be successful, the method
requires a precision and uniformity of variance in the microar-
ray data that has not been achieved yet, but the method may be
valuable as another tool in inferring pathways. A promising
area of research is to guide the choice of layers using partial
information about pathways.

ANNOTATION AND FUNCTIONAL CHARACTERIZATION
OF GENES

Detection and clustering of differentially expressed genes, as
described above, are just the first steps toward learning about gene
function and genetic networks. There are many situations when
limited gene expression data are available but existing gene
networks or functional classes of genes are known. In this case,
one can try to relate. Perhaps the single most important source of
information for relating newly acquired gene expression level data
to known functional and partial pathway information is the
Gene Ontology (GO) database. The GO project (http://www.
geneontology.org/) is a collaborative effort to address the need
for a consistent description of gene products in different data-
bases. GO produces a controlled vocabulary that can be applied to
all organisms even as knowledge of gene and protein roles in cells
is accumulating and changing. GO provides three structured
networks of defined terms to describe gene product attributes (37,
59). The three organizing principles of GO are molecular function,
biological process, and cellular component. A gene product has
one or more molecular functions and is used in one or more
biological processes; it might be associated with one or more

cellular components. As an example to demonstrate the potential
usage of the GO tools in cardiovascular medicine, a sample
functional analysis of the list of genes identified to be differen-
tially expressed in ischemic cardiomyopathy patients vs. “normal”
organ donors (http://www.cardiogenomics.org) is described.
The data set consists of a total of 46 Affymetrix microarrays of 32
ischemic cardiomyopathy patients and 14 normal donors. Figure 2
illustrates the expression patterns for 500 genes screened as
differentially expressed using RMA preprocessing and a multi-
variate filter. Values from normal donors comprise the left 14
columns. From the set of 500 genes, 66 genes were chosen using
FDR criteria. Among these genes, 47 of them were upregulated in
the ischemic hearts, while 19 were downregulated. To discern
whether the genes selected as differentially expressed are mean-
ingful biologically, we utilized the Gene Ontology Tree Machine
(GOTM; http://genereg.ornl.gov/gotm) to annotate their func-
tions and to classify them into functional categories. Using all
genes in the human genome as our reference gene set, we were
interested in identifying GO categories that are being enriched in
our set of 66 genes. In other words, we sought to identify
functional categories in which there are more genes in our list
belonging to them than expected if the genes were randomly
selected from the human genome. For a specific given category,
under the null hypothesis of random selection, the number of
genes from our list falling into that particular category follows a
hypergeometric distribution, leading to a simple test for the
hypothesis. All GO categories that were identified to be signifi-
cantly enriched (raw P � 0.01; with category names in red),
together with their ancestral categories (up to the top level with 3
main categories: biological process, molecular function, and cel-
lular component), are displayed as a directed acyclic graph (see
Fig. 4). The numbers below or next to a category are the observed/

Fig. 2. Heat map of 500 genes for normal and ischemic human hearts
(map generated based on data from http://www.cardiogenomics.org).
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Fig. 3. List of genes involved in each functional cate-
gory of Fig. 4.

Fig. 4. Directed acyclic graph view of the significantly enriched Gene Ontology categories (names in red) and their ancestor categories.
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expected gene numbers for that category. Displayed in Fig. 3 are
the genes involved in each GO category shown in Fig. 4. Each
row represents one gene, with a black square denoting the in-
volvement of the gene in the corresponding column (category).
Each column stands for one category ordered first by levels.
Within each level, the categories are ordered from left to right
according to the display. From the raw P values of GOTM, we
calculated the adjusted P values to correct for multiple testing
using the FDR method (6). A cutoff of 0.05 for the adjusted P
values led to a number of enriched categories no longer being
enriched (red categories without shading in Fig. 3). More specif-
ically, those with FDR-adjusted P values � 0.01 are shaded in
pink, whereas those with FDR-adjusted P values between 0.05
and 0.01 are shaded in gray. We note that most of the enriched
categories are involved in “transport,” “binding,” “extracellular,”
and “transmembrane” activities. In particular, the two genes in-
volved in the category “vascular endothelial growth factor recep-
tor activity” are MXRA5 and IGSF10, both of which are upregu-
lated. These findings are consistent with those reported by Lee et
al. (38).

PATHWAY CONSTRUCTION

The Kyoto Encyclopedia of Genes and Genomes, or KEGG
(31, 32), is a suite of databases and associated software
integrating current knowledge on molecular interaction net-
works in biological processes (the PATHWAY database), on
the universe of genes and proteins (the GENES/SSDB/KO
databases), and on the universe of chemical compounds and
reactions (the COMPOUND/GLYCAN/REACTION data-
bases). Several methodologies have been proposed for con-
structing gene networks based on gene expression data, such as
the Boolean networks (1) or differential equation models (15).
Another way of addressing this question is the Bayesian
networks framework (22, 26), where the expression level of
each gene is treated as a random variable and each regulatory
interaction as a probabilistic dependency between such vari-
ables. Bayesian networks are graph-based models of joint
multivariate probability distributions that capture properties of
conditional independence between variables. Such models are
attractive for their ability to describe complex stochastic pro-
cesses and provide a tool for learning from noisy observations.
In addition, bootstrap methods can be used for estimating
confidence in the learned structures (19). The main idea is to
sample, with replacement, observations from the given data set
and learn for them. In this way, many networks are generated,
all of which are reasonable models reflecting the effect of small
perturbations in data on the learning process (22). However,
because of limited expression data typically available for any
particular system in a given state, network reconstruction
processes typically result in the identification of multiple net-
works that explain data equally well. In most cases, causal
relationships cannot be reliably inferred from gene expression
data alone, since, for any particular network, changing the
direction of the edge between two nodes has little effect on the
model fit. To reliably infer causal relationships, additional
information is required. Biological knowledge (29), including
protein-protein and protein-DNA interactions (28), binding site
sequences, and transcription factors (40), is needed. More
recently, pathway reconstruction associated with complex dis-
ease traits was obtained by integrating genotype, transcription,

and clinical trait data (67). In this approach, gene expression
data were treated as quantitative trait loci (QTL). Patterns of
colocalization between disease trait QTL and gene expression
QTL are indicative for causal inference. There are several
network/pathway reconstruction and analysis software pack-
ages that implement these ideas. One example is Genetic
Network Analyzer (GNA), which is a computer tool for the
modeling and simulation of genetic regulatory networks (5,
16). The aim of GNA is to assist biologists and bioinformati-
cians in constructing a model of a regulatory network using
knowledge about regulatory interactions in combination with
gene expression data. Another software tool is Gene MicroAr-
ray Pathway Profiler (GenMAPP), a free computer application
designed to visualize gene expression data on maps represent-
ing biological pathways and groups of genes (14, 18). Another
useful software tool is Cytoscape, an open-source software
project for integrating biomolecular interaction networks with
high-throughput expression data and other molecular states
into a unified conceptual framework (45, 55). Although appli-
cable to any system of molecular components and interactions,
Cytoscape is most powerful when used in conjunction with the
large databases of protein-protein, protein-DNA, and genetic
interactions that are increasingly available for humans and
model organisms.

In conclusion, the promise of gene expression studies using
microarray technology has inspired much new hope for finding
complex disease genes. The majority of the initial technical
challenges of conducting experiments are being resolved only
to be replaced with new informatics hurdles, including statis-
tical analysis, data visualization, and interpretation. Advances
in microarray technology have necessitated parallel mining of
large volumes of biological data. Progress in the genomics
revolution is limited by our ability to transform such large
amounts of raw data into reliable and meaningful biological
sense. Emergent software and statistical tools as well as web
resources address the multidimensional complexities faced
by investigators while making sense of their microarray
data. Academic core facilities are the likely medium of
distilling that interdisciplinary information and carrying it to
the end user who is seeking to employ microarrays as a tool
to generate or address hypotheses. The robust ability to
reconstruct signaling pathways based on microarray data
requires tighter interplay and integration between bioinfor-
matics and systems biology.
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