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ABSTRACT

Increased oxidative stress and impaired heat shock protein (HSP) synthesis may contribute to diabetic
nephropathy. The question of whether 8-week thiol antioxidant alpha-lipoic acid (LA) supplementation mod-
ulates HSP response and oxidative stress was studied in the kidney of streptozotocin-induced diabetic (SID)
and nondiabetic rats. SID caused a histological mesangial expansion, tubular dilatation, and increased levels
of transforming growth factor-beta (TGF-f3), a mediator of glomerulosclerosis. SID increased 4-hydrox-
ynonenal (4-HNE) protein adduct formation, a marker of lipid peroxidation, and heme oxygenase-1 (HO-1),
also a marker of oxidative stress. Moreover, SID increased the DNA-binding activity of heat shock factor-1
(HSF-1) and expression of heat shock protein 60 (HSP60). In contrast, LA supplementation partially reversed
histological findings of glomerulosclerosis and decreased TGF-f. LA also increased HSF-1 and decreased
HO-1 protein expression, without affecting 4-HNE protein adduct levels. At the mRNA level, LA increased ex-
pression of HSF-1, HSP90, and glucose-regulated protein (GRP75) in both control and diabetic animals and
HSP72 in SID rats. However, LA supplementation did not affect these HSPs at the protein level. These find-
ings suggest that in addition to its antiglomerulosclerotic effects, LA can induce cytoprotective response in
SID. Antioxid. Redox Signal. 9, 497-506.

INTRODUCTION

NEPHROPATHY IS A MAJOR CAUSE of morbidity in diabetes
(58). Diabetes results in increased oxidative stress, al-
terations in lipid metabolism, oxidative modification of pro-
teins and lipids, and perturbations in tissue antioxidant sys-
tems (3, 9, 14, 18, 24, 27).

Experimental diabetes induced by streptozotocin (STZ) is
accompanied by oxidative stress and renal injury character-
ized by glomerulosclerosis (33). Glomerulosclerosis is in part
a result of oxidative stress-induced mesangial cell dysfunc-
tion mediated by transforming tissue growth factor-beta

(TGF-B), which results in excessive accumulation of mesan-
gial matrix (11). Both short- and long-term supplementation
with alpha-lipoic acid (LA) prevented or attenuated these
pathological changes (32, 33). LA is a natural, potent thiol
antioxidant that is also capable of regenerating major physio-
logical antioxidants of the lipid and aqueous phases (25, 48,
49). In addition to its antioxidant properties, LA is a cofactor
in oxidative metabolism (39), a substrate for reduction, mod-
ulating intracellular reducing equivalents (45), stimulates
glucose uptake (26), and regulates redox-dependent gene ex-
pression (49). Therefore, LA has been considered to be a
metabolic antioxidant and has been used widely as a thera-
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peutic agent in diseases associated with increased oxidative
stress, including diabetes and its complications (39).

We have previously shown in rats that 8 weeks of LA sup-
plementation provided protection against lipid peroxidation
and favorably influenced antioxidant levels in the heart and
skeletal muscle after exhaustive exercise (25). Moreover, our
group has recently shown that LA is capable of compensating
the deleterious effects of oxidative stress and upregulating
heat shock protein (HSP) synthesis in experimental diabetes
in the liver and heart tissue (37). HSPs are a class of stress-
induced proteins that protect against tissue injury by main-
taining protein synthesis, repairing damaged proteins, and
promoting the healing of injured tissue (41, 42). Our group
has recently demonstrated impaired HSP synthesis in skeletal
muscle, liver, and heart in STZ—induced experimental dia-
betes (SID) in rats (4, 37). We suggested that these changes
were modulated by transcriptional mechanisms, most proba-
bly via decreased activity of heat shock transcription factor-1
(HSE-1) (4).

Data from the few previous studies on the effects of LA on
heat shock response are conflicting: LA supplementation in
vitro did not alter HSP expression in endothelial cells and
macrophages (15, 30), whereas LA was shown to normalize
low levels of plasma HSPs in type 1 diabetic subjects (51).
Biologically, LA exists as a lipoamide in mitochondrial pro-
teins, where it is covalently linked to a lysyl residue. Interest-
ingly, among all animal tissues, the highest concentrations of
LA in the form of lipoyllysine have been detected in kidney
(49). Because LA has the highest bioavailability in kidney, it
is anticipated that renal tissue would be particularly respon-
sive to LA supplementation. Nevertheless, to our knowledge
the effect of LA on renal HSP expression has not been studied
before.

We therefore tested our hypothesis that diabetes can modu-
late HSF-1 mediated HSP expression in the kidney of SID rats.
We also examined whether LA supplementation could improve
impaired renal tissue protection in experimental diabetes.

MATERIALS AND METHODS

Experimental protocol

The experimental protocol was approved by the Ethics
Committee for the laboratory animal research of University
of Kuopio, Finland. Animal care and experimental procedure
were in accordance with the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes
of Health (NIH Publication No. 85-23, revised 1985). Male
outbred Wistar rats (n = 40) (National Laboratory Animal
Center, Kuopio, Finland) were maintained at 22 + 2°C with
12:12 h light:dark cycles and had free access to standard rat
chow and water. Half of the rats were pair-matched according
to their weight and randomly assigned to the diabetic group,
which was induced by the injection of STZ as described
below. The other half of the rats was kept as a control group.
Rats with sustained diabetes (glucosuria of at least 20 mM 2
weeks after the STZ injection) and the nondiabetic control
rats were further randomly divided into LA supplemented and
nonsupplemented groups (n = 10 per group).

OKSALAETAL.

Preparation of diabetic rats

Diabetes was induced by a single intraperitoneal injection
of STZ at a dose of 60 mg/kg (prepared in 0.1 M citrate
buffer, pH 4.5) to 12-week-old animals, as described earlier
(4). STZ has been shown to destroy pancreatic beta cells,
being a model of experimental type 1 diabetes (54). The state
of diabetes was confirmed by glucosuria using glucose test
strips (BM-Test-5L, Boehringer Mannheim, Mannheim, Ger-
many) after 1 week of STZ injection. A dipstick urine test
was repeated once a week during the study. Blood glucose
levels were also measured at the end of the study in truncal
blood collected immediately after decapitation using a com-
mercial kit  (Gluco-quant Glucose/HK, Boehringer
Mannheim) based on a hexokinase/G6P-DH enzymatic
method, as previously reported (18).

Supplementation protocol

A solution of racemic mixture of LA (Asta Medica, Frank-
furt, Germany) was prepared in phosphate buffered saline
(PBS, pH 7.4) and administered intragastrically to rats at
doses of 150 mg per kg of body weight per day for 8 weeks.
The corresponding control groups received PBS only.

Sample collection

After 8-week supplementation period, the animals were
pair-matched between groups. LA-supplemented and nonsup-
plemented, SID and control rats were killed at rest by decapi-
tation. Next, the kidneys were quickly removed, rinsed in ice-
cold saline and blotted, cut into small pieces and snap-frozen
in liquid nitrogen and stored at —70°C for later homogeniza-
tion and biochemical determinations.

Histology

Kidney samples were fixed overnight with 4% formalin
solution buffered with sodium-phosphate at +5°C. Routine
paraffin-embedding and tissue processing were performed.
Sections of 3 um thickness were mounted on glass slides and
stained with Hematoxylin—Eosin.

Western blot analysis

Samples were analyzed for HSP protein expression using
standard Western blot techniques, as previously described (4,
37). Briefly, the samples were first pulverized under liquid
nitrogen with a mortar and sonicated in a buffer containing
25% glycerol (wt/vol), 0.42 M NaCl, 1.5 mM MgCl,, 0.2 mM
ethylenediaminetetraacetic acid, 20 mM N-2-hydroxyethyl-
piperazine-N'-2-ethanesulfonic acid, 5 uM dithiotreitol, and 5
uM phenylmethylsulphoxide at +4°C. Next, protein extracts
(30 pg protein per lane) were electrophoresed together with
molecular weight markers on 8 or 10% SDS/PAGE (sodium
dodecyl sulfate/polyacrylamide gel electrophoresis) and
transferred to a nitrocellulose membrane (Millipore, Bedford,
MA). Equal transfer was checked and quantified by re-
versible protein staining of the nitrocellulose membrane with
Ponceau S (Sigma, St. Louis, MO). After blocking with 5%
(wt/vol) fat-free milk solution, at 37°C for 60 min, the mem-
branes were treated with monoclonal antibodies (Ab) (all
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from StressGen, Victoria, Canada) recognizing heme oxyge-
nase-1 (HO-1), the 60 kDa HSP (HSP60), the 72 kDa in-
ducible form of HSP (HSP72), the 90 kDa HSP (HSP90), and
glucose-regulated protein 75 (GRP75). As secondary Ab,
horseradish peroxidase (HRP)-conjugated anti-mouse (Santa-
Cruz Biotechnology, Santa Cruz, CA) and anti-rat im-
munoglobulins (IGs) (Zymed Laboratories, San Francisco,
CA) were used, respectively. The membranes were developed
with enhanced chemiluminescence method (NEN Life Sci-
ences, Boston, MA) and quantified using image-analysis
software (ScionCorp, Frederick, MD).

For protein carbonyls (PCARB) measurements, tissue ex-
tracts were derivatized with 2,4-dinitrophenylhydrazine im-
mediately before the electrophoresis, and subsequent Western
blotting was performed as previously described (4). Rat mon-
oclonal Ab against 2,4-dinitrophenyl and anti-rat IGs (Zymed
Laboratories) were used as primary and secondary Ab, re-
spectively. Measurement of 4-hydroxy-2-nonenal (4-HNE)
protein adducts were performed as described (37) by using
rabbit 4-HNE anti-serum (Alpha Diagnostics, San Antonio,
TX) and HRP-conjugated anti-rabbit IGs (Santa-Cruz
Biotechnology) as secondary antibody.

Analysis of TGF-3

TGF-B levels in the supernatants obtained from tissue ho-
mogenates were measured using a commercially available
ELISA kit according to the manufacturer’s instructions (R&D
Systems, Minneapolis, MN). Results were normalized to the
total protein concentration of tissue homogenates.

Analysis of gene expression

To analyze mRNA expression of HSP60, HSP72, HSP90,
GRP75, HO-1, HSF-1, and beta actin (ACTB) in kidney tis-
sue, a quantitative real-time RT-PCR was applied (20).
Briefly, 100 mg of tissue was first homogenized with Ultra-
Turrax and total cellular RNA was isolated using TRIzol
reagent according to manufacturer’s instructions (Life Tech-
nologies, Gaithersburg, MD). RNA concentrations were de-
termined by NanoDrop spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE) and their integrity was checked
with gel electrophoresis. One microgram of total RNA from
each sample was then converted to cDNA using SuperScript
IIT reverse transcriptase (Invitrogen, Carlsbad, CA) and
oligo(dT) primers (Promega, Madison, WI).

For PCR primer design, the annotated nucleotide sequences
were retrieved from GenBank database (National Center for
Biotechnology Information, Bethesda, MD) and BLAST
searches (2) were performed to identify unique stretches of nu-
cleotide sequence. The primers were designed not to amplify ge-
nomic DNA. The selected primer sequences were synthesized by
Oligomer Oy (Helsinki, Finland) and were as follows: HSP60
forward primer (-F) 5'-AAAGCTGAACGAGCGACTTG-3'
and reverse primer (-R) 5'-ATCACTTGTCCCTCCAACCTTC-
3'; HSP72-F 5'-CAACTGGCTTGACCGAAACC-3" and
HSP72-R 5'-AGCGCAAGCCTAGTCCACTTC-3'; HSP90-F
5'-GTACGAAACAGCACTCCTGTCTTC-3" and HSP90-R 5'-
ATCCTCATCAATACCTAGACCAAGC-3';  GRP75-F  5'-
ACGAGGATGCCCAAGGTTC-3" and GRP75-R  5'-
TGAATGGCAGCTCCAATGG-3'; HO-1-F 5'-GGAAGGCTT-
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TAAGCTGGTGATG-3" and HO-1-R 5'-GGTTCTGCTTG-
TTTCGCTCTATC-3'; HSF-1-F  5'-GCCAGCATTCAGGA-
ACTTCTATC-3' and HSF-1-R 5'-CACCAGCTGCTTTCCT-
GAGT-3"; ACTB-F 5'- CATCCTGGCTCACACTGAATTC-3'
and ACTB-R 5'- TCCAGATGATTCAGAGCTCCATAG-3".
The samples were amplified in duplicate using Brilliant
SYBR Green Master Mix (Stratagene, La Jolla, CA) with 200
nM of gene-specific primers, and run on Mx3000P System
(Stratagene) with the following program: a 10 min preincuba-
tion at 95°C, followed by 40 cycles of 15 s at 95°C, 20 s at
59°C, and 25 s at 72°C. The data were normalized relative to
expression of ACTB by using the previously introduced algo-
rithm (40). Unique amplification products and absence of
primer—dimers was evaluated by melt curve analysis.

DNA-binding activity

For the measurement of HSF-1 DNA-binding activity, an
electrophoretic mobility shift assay (EMSA) was performed
as previously described (4). The protein extracts were pre-
pared similar to Western blot analysis and mixed with iso-
tope-labeled probes corresponding to the two overlapping
heat shock elements. Protein—DNA complexes were resolved
on a nondenaturing polyacrylamide gel. The EMSA gels were
dried and the radioactivity was detected by autoradiography.

Statistics

Two-way ANOVA with Bonferroni correction and inde-
pendent samples 7-test were used to evaluate the effect of dia-
betes and LA supplementation. Values of p < 0.05 were con-
sidered statistically significant. Data are represented as
means + S.E.M. unless otherwise stated.

RESULTS

Effect of experimental diabetes

Induction of SID resulted in mesangial expansion and tu-
bular dilatation (Fig. 1) and increased kidney TGF-f levels
(Fig. 2), which is an indicator of diabetic glomerulosclerosis.
SID also increased the levels of 4-HNE protein adducts and
HO-1 (Figs. 2 and 3, respectively), markers of oxidative
stress.

SID resulted in increased DNA-binding activity of HSF-1,
which was not, however, paralleled with HSF-1 protein or
mRNA (Figs. 4 and 5, respectively). A subsequent increase in
the HSP72 mRNA (Fig. 6) and HSP60 protein (Fig. 7) and
decreased expression of GRP75 mRNA were also observed in
response to SID (Fig. 8).

Effect of LA supplementation

Supplementation with LA decreased the tubular dilatation
and mesangial expansion, as observed by histological stain-
ing (Fig. 1), and reversed the SID-induced TGF-B (Fig. 2).

LA did not have any effect on 4-HNE protein adducts
(Fig. 2), although it decreased the HO-1 protein in SID rats
(Fig. 3). However, LA increased HSF-1 mRNA and protein in
diabetic and nondiabetic rats, although the DNA-binding ac-
tivity of HSF-1 remained unchanged (Figs. 4 and 5).
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FIG. 1. Representative light microscopy images of the kidney tissue of nondiabetic control animals (A), nondiabetic con-
trol animals supplemented with alpha-lipoic acid (LA) for 8 weeks (B), streptozotocin-induced diabetic (SID) animals (C),
and SID rats LA supplemented for 8 weeks (D). Specimens were stained by Hematoxylin—Eosin. Magnification 10 X and 20 X.
Asterisks indicate tubular dilatation; arrows indicate mesangial expansion.

The mRNA for HSP72 was only induced in diabetic rats
(Fig. 6), whereas the mRNA for GRP75 and HSP90 was up-
regulated in all LA-supplemented animals (Figs. 8 and 9, re-
spectively). However, LA did not have any effect on these
HSPs at the protein level.

DISCUSSION

Diabetic nephropathy induced by STZ is associated with
disturbances in the protein turnover (55) and may therefore
impair the function of molecular chaperones such as HSPs,
which participate transiently in the folding of other proteins

into oligomeric structures. In this study, we have tested for
the first time the role of natural antioxidant supplementation
(LA) on the HSP synthesis in the kidney of diabetic (SID)
and nondiabetic rats.

SID was characterized histologically by glomerulosclerosis
and tubular dilatation, and also by increased synthesis of
TGF-B, which is a marker of glomerulosclerosis (11). In ad-
dition, we observed an increased SID-mediated oxidative
stress, as indicated by elevated levels of 4-HNE protein
adducts and upregulation of HO-1 mRNA. SID also increased
HSF-1 DNA-binding activity and HSP60 protein content. LA
supplementation increased levels of HSF-1 mRNA and pro-
tein and HSP72 mRNA, and reversed the induction of HO-1
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and TGF-B protein expression. LA also seemed to at least
partly reverse the histological abnormalities associated with
glomerulosclerosis.

In the kidney, chronic hyperglycemia results in the modifi-
cation of cellular proteins that may accumulate in cells and
accelerate further tissue injury (52). Furthermore, we (4, 37)
and others (53) have previously shown that SID decreased
levels of HSP72, HSP60, and GRP75 in the heart, liver, and
skeletal muscle. It thus seems that alterations in kidney HSP
synthesis differ from other tissues that may reflect diverse
and tissue-specific patterns of HSP regulation.

Other HSPs are also likely to be affected in the diabetic
kidney. For instance, HSP27 is normally present in the me-
dulla, a region exposed to osmotic stress (35), and HSP27 has
been suggested to provide protection against this type of
stress (6). Whereas HSP47 has a crucial role in collagen

biosynthesis (13), increased expression of HSP47 is associ-
ated with glomerulosclerosis and tubulointestinal fibrosis in
human diabetic nephropathy (43). In rats with SID, HSP47
was mostly involved in the chronic phase of the diabetes (29).
In this study we only measured TGF-B to demonstrate
glomerulosclerosis. The renal TGF-f3 system is significantly
upregulated in diabetic nephropathy and because TGF-f3 lev-
els are causally related to the degree of glomerulosclerosis
and procollagen synthesis (11), they will most probably cor-
relate with increased levels of HSP47.

Oxidative stress and generation of reactive oxygen species
(ROS) are critical factors in the development of diabetic
nephropathy because they have shown to increase the levels
of mediators such as PCARB (5). SID was shown to augment
the generation of ROS in 8 weeks (46), and to induce oxida-
tive damage in the kidney at 2 (17) and 4 (19, 38) weeks after
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FIG. 8. Effect of streptozotocin-
induced diabetes (SID) and 8-week 25-
alpha-lipoic acid supplementation
(LA) on the mRNA and protein ex-
pression of glucose-regulated protein
75 (GRP75) in kidney tissue. Groups
are as in Fig. 2. Densitometric values are
mean + S.E.M. Difference due to SID:
**p <0.01. Difference due to LA supple-
mentation: $1fp <0.001.
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the induction. However, oxidative damage to kidney was
shown to be reversed by insulin administration (57).

In our model, SID induced characteristic histological
changes, including tubular dilatation and expansion of the
mesangial matrix, which is in agreement with Melhem et al.
(32, 33). In addition, we observed an increased production of
TGF-B. Indeed, glomerular TGF-$ has shown to be increased
in both human and experimental diabetes mellitus, and this
prosclerotic cytokine has been implicated as a major mediator
of glomerular mesangial expansion in diabetic nephropathy
(11, 50). Previous studies indicate that increased oxidative
stress is one of the major inducer of TGF-@3, and that LA and
other antioxidants decreased TGF- in the diabetic kidney
(12, 32).

We observed an increased oxidative stress in the kidney of
SID rats as demonstrated by increased lipid peroxidation (4-
HNE protein adducts) and HO-1 expression. Indeed, high

metabolic activity and vast blood flow predisposes kidney to
oxidative stress, an inducer of HSP expression (7), although
ROS have also been shown to participate in the homeostatic
regulation of renal perfusion (47). However, in diabetic ani-
mals, we did not observe any enhancement in HSP response
at the protein level, despite elevated oxidative stress and acti-
vation of HSF-1. HSP60 was the only exception.

In rats, SID leads to increased levels of IGF-1 in the
glomeruli, which correlates with glomerular hypertrophy
(16). It seems that HSP60 and IGF-1 cross-talk, because
HSP60 is capable of upregulating functional IGF-1 receptors
(IGF-1R) by inhibiting its ubiquitination (28). By itself, IGF-
IR inhibits hyperglycemia-induced DNA damage and rescues
mesangial cells by suppressing ROS and enhancing DNA re-
pair, a possible auto-defense mechanism (56). Whether the
amounts of HSP60 and IGF-1R correlate in our model, re-
mains to be elucidated in future studies.

FIG. 9. Effect of streptozotocin-
induced diabetes (SID) and 8-week
alpha-lipoic acid supplementation
(LA) on the mRNA and protein ex-
pression of heat shock protein 90
(HSP90) in kidney tissue. Groups are
as in Fig. 2. Densitometric values are
mean + S.E.M. Difference due to LA
supplementation: {p < 0.05.
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In our study, the HSP72 protein expression tended to de-
crease in diabetic rats. Recently, we observed an overall im-
paired HSP protection in skeletal muscle, heart, and liver in
SID rats (4). A key role for HSP70 in renal function is pro-
vided by the finding that HSP70 is required to stabilize kid-
ney Na-K-ATPase during ATP depletion in LLC-PK1 cells
(44), and that increased expression of HSP70 protects rat kid-
ney mesangial cells against oxidative injury (10). In diabetes,
kidneys are subjected to metabolic load as a consequence of
alterations in pH, blood glucose, osmolarity, and altered fatty
acid turnover. Therefore, in SID, when enhanced HSP re-
sponse does not compensate for the metabolic changes, in-
cluding oxidative stress, there may be a high predisposition
for tissue injury.

We observed increased expression of HSF-1 in SID rats
after 8 weeks of LA supplementation. Although LA has
shown to have beneficial effects on oxidative stress in SID in
the heart (37) and kidney (33, 36) and HSP60 synthesis in the
liver (37), the effects of LA on HSP synthesis in kidney have
been unknown. Earlier, it was demonstrated that 8-week sup-
plementation with LA was successful for prevention of early
glomerular injury in SID (32). In the current study, we used
higher doses of LA, which we expected to provide similar or
even better antioxidative effect. Previously, no effect of LA
was found on the heat shock response in lipopolysaccharide-
stimulated macrophages in vitro (15), whereas LA was found
to recover lower plasma content of HSP72 in type 1 diabetic
patients with polyneuropathy (51). LA supplementation in-
duced HSF-1 mRNA and protein expression in the present
study, but it did not affect HSP levels. Consistent with our
findings, McCarthy suggested previously that high-dose LA
may enhance HSP expression by activating HSF-1 via induc-
tion of disulfide formation in certain target proteins (31).

Prior to our study, there has been very little evidence to
support this hypothesis. The major discrepancy that we ob-
served in our study, that LA supplementation did not alter
HSP expression, despite upregulation of HSF-1 at both
mRNA and protein levels, could be explained by the meta-
bolic conditions in diabetes that have shown to repress HSP
induction and overall protein synthesis (4). In addition, to
fully activate heat shock genes, HSF-1 hyperphosphorylation
is required (23), which may, however, be impaired in SID re-
sulting in unchanged HSP levels. Another possibility is that
the HSP response can also be modulated at the post-transcrip-
tional level (i.e., via regulation of mRNA stabilization (23).
HSF-1 is also a regulator of target genes other than HSPs, in-
cluding cytokines and cell cycle regulators (8, 21). It is im-
portant to note that increased synthesis of HSPs is not always
the direct outcome of increased HSF-1 DNA-binding activity,
because heat shock response may only be partially activated
(22). Furthermore, as HSP72 has shown to downregulate
HSF-1 activation (1), an impaired translation of HSP72
mRNA may also decrease this negative feedback, and hence
may increase the DNA-binding activity of HSF-1 without
preceding changes in HSP72 levels.

The effect of LA on blunting HO-1 expression may be at-
tributed to its antioxidant effects. Indeed, acute HO-1 induc-
tion has often been interpreted as a marker of increased ox-
idative stress, although overexpression of HO-1 has been
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shown to provide protection against oxidative damage (7,
34).

In conclusion, SID resulted in glomerulosclerosis and in-
creased lipid peroxidation in rat kidney without compensa-
tory upregulation of HSPs at the protein level. On the other
hand, 8 weeks of LA supplementation decreased TGF-f3, a
key inducer of glomerulosclerosis, and HO-1, a marker of ox-
idative stress in diabetic rat kidney. We therefore suggest that
impaired HSP synthesis may contribute to diabetic nephropa-
thy, and that LA supplementation may act as a potential tool
in the future to decrease diabetic renal complications, alone
or together, with other HSP inducers.
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