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ABSTRACT

Repair of a defect in the human skin is a highly orchestrated physiological process involving numerous factors

that act in a temporally resolved synergistic manner to re-establish barrier function by regenerating new skin.

The inducible expression and repression of genes represents a key component of this regenerative process.

MicroRNAs (miRNAs) are *22-nucleotide-long endogenously expressed non-coding RNAs that regulate the

expression of gene products by inhibition of translation and/or transcription in animals. miRNAs play a key role

in skin morphogenesis and in regulating angiogenesis. The vascular endothelial growth factor signaling path

seems to be under repressor control by miRNAs. Mature miRNA-dependent mechanisms impair angiogenesis
in vivo. It is critically important to recognize that the understanding of cutaneous wound healing is incomplete

without appreciating the functional significance of wound-inducedmiRNA.Ongoing work in our laboratory has

led to the observation that the cutaneous wound healing process involves changes in the expression of specific

miRNA at specific phases of wound healing. We hypothesize that dysregulation of specific miRNA is critical in

derailing the healing sequence in chronic problem wounds. If tested positive, this hypothesis is likely to lead to

completely novel diagnostic and therapeutic strategies for the treatment of problem wounds.

INTRODUCTION

R EPAIR OF A DEFECT IN THE HUMAN SKIN is a highly orches-

trated physiological process involving numerous factors

that act in a temporally resolved synergistic manner to re-establish

barrier function by regenerating new skin. The inducible ex-

pression and repression of genes represents a key component of

this regenerative process (Sen, 2003; Broughton et al., 2006a;

Branski et al., 2007). The central dogma in molecular biology has

been that DNA replicates its information and transcribes to RNA

where it codes for the production of mRNA. mRNA is processed

essentially by splicing and translocates from the nucleus to the

cytoplasm. mRNA carries coded information to the ribosomes.

Ribosomes translate the code for protein synthesis. The synthesis

of specific proteins and their proper functionality at the correct

temporal phase of healing is central to wound healing. Do all

RNAs carry the code to synthesize protein? No. However, almost

all means of gene identification assume that genes encode pro-

teins. An important aspect of the central dogma remained under

veils for a long time. Non-coding RNA (ncRNA) genes produce

functional RNAmolecules rather than encoding proteins. Several

different systematic screens have identified a surprisingly large

number of ncRNA genes. NcRNAs seem to be particularly

abundant in roles that require highly specific nucleic acid rec-

ognition without complex catalysis, such as in directing post-

transcriptional regulation of gene expression or in guiding RNA

modifications. Although it has been generally assumed that most

genetic information is transacted by proteins, recent evidence

suggests that the majority of the genomes of mammals and other

complex organisms are in fact transcribed into ncRNA, many of

which are alternatively spliced and/or processed into smaller

products (Mattick and Makunin, 2006). These RNAs (including

those derived from introns) appear to comprise a hidden layer of

internal signals that control various levels of gene expression in

physiology and development, including chromatin architecture/

epigenetic memory, transcription, RNA splicing, editing, trans-

lation, and turnover. This hidden layer of internal signals is now

emerging to be of such critical significance that lack of consid-

eration of that layer poses the serious risk of clouding our ability

to understand the molecular basis of health and disease (Goodrich

and Kugel, 2006; Mattick and Makunin, 2006; Racz and Hamar,

2006; Tomaru and Hayashizaki, 2006). In all forms of life,

ncRNA includes ribosomal RNA (rRNA), transfer RNA (tRNA),

small nuclear RNA (snRNA), small nucleolar RNA (snoRNA),
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interference RNA (RNAi), short interfering RNA (siRNA), and

micro RNA (miRNA). The objective of this review article is to

focus on the potential role of miRNA in cutaneous wound healing

with the goal of developing the extraordinary significance of this

new field.

FROM RNAI TO MIRNA

Post-transcriptional gene silencing (PTGS), which was ini-

tially viewed as an isolated regulatory mechanism in some plant

species, now represents a major frontier in molecular medicine

(Filipowicz et al., 2005; Racz and Hamar, 2006). RNAi was first

observed inadvertently in an experiment to increase the purple

pigment in petunias. However, the experiment backfired when

the gene that was introduced caused PTGS of the pigment-

producing gene. Subsequent studies on C. elegans and the fruit

fly Drosophila revealed that PTGS could be triggered by

dsDNA. A similar phenomenon in fungus was termed ‘‘quell-

ing’’ in 1992. Andrew Fire and Craig Mello (Nobel Prize win-

ners in Physiology orMedicine, 2006) are credited with the 1998

discovery of RNAi (Fire et al., 1998). Earlier works had iden-

tified that both antisense RNA (Izant and Weintraub, 1984) as

well as sense RNA (Guo and Kemphues, 1995) could silence

genes although the results were inconsistent and the effects

usually modest. In light of the observation that both sense and

antisense RNA could cause silencing, Mello argued that the

mechanism could not just be a pairing of antisense RNA to

mRNA, and he coined the term RNAi for the unknown mech-

anism (Rocheleau et al., 1997). The discovery that short RNA is

the effector of RNAi was rapidly followed by the identification

of a class of endogenous RNA molecules of the same size in

worms, flies, mice, and humans. This small RNA was called

miRNA (Reinhart et al., 2000; Lagos-Quintana et al., 2001; Lee

and Ambros, 2001). miRNA can regulate gene expression by

base pairing to mRNA, which results in either degradation of the

mRNA or suppression of translation. There are 640 miRNA in

human cells, which regulate about 30% of all genes.

MIRNA: AN INTRODUCTION

miRNAs are *22-nucleotide (nt) endogenously expressed

RNAs that belong to the family of short ncRNA (Bartel, 2004).

Transcribed in the nucleus by conventional mechanisms, mi-

RNAs are exported to the cytoplasm (Yi et al., 2003), where they

form thematuremiRNAs that can interact withmatchingmRNA

causing degradation of specific mRNAs. In addition, this bind-

ing may cause translational or transcriptional inhibition (Fig. 1).

This mechanism of action is termed as post-transcriptional gene

regulation. In contrary to plants, in animals 100% nt match

betweenmiRNA and its target mRNA is not typically seen. Such

binding leads to mRNA translational inhibition and not mRNA

degradation (Carrington and Ambros, 2003). The interaction be-

tween the miRNA and its matching mRNA occurs between the

50 untranslated region (UTR) of the miRNA to the 30 UTR of the

mRNA by a matching seed element in the miRNA. Computa-

tional algorithms estimate that miRNA can target 30% of the

human genome (Lewis et al., 2005; Kruger and Rehmsmeier,

2006; Smalheiser and Torvik, 2006). Furthermore, one miRNA

can regulate more than one gene, and one gene can be regulated

by a number of miRNAs. An important consideration in this

context is that there is tissue specificity for miRNA expression.

Thus, specificmiRNA regulates specific sets ofmRNA in a given

tissue. As a result, miRNAs play a significant role in develop-

mental biology and in cell and tissue phenotyping (Monticelli

et al., 2005; Song and Tuan, 2006; Sood et al., 2006). A total

of 640 miRNAs have been discovered in humans and more

in other species, as recorded in the miRNA registry. It is not sur-

prising that these RNA members are highly conserved among

species and such conservation serves as one of the tools for

identifying new miRNAs throughout the genome (Altuvia et al.,

2005; Berezikov et al., 2005; Weber, 2005; Yousef et al., 2006).

In the genome, miRNAs are distributed in non-coding DNA

regions. They can be found in introns of protein-coding genes

(Ying et al., 2006), or introns and exons of ncRNA genes (Ro-

driguez et al., 2004). Thus, miRNAs are under transcriptional

regulation of the host genes. In addition, the miRNA genes are

either genomically isolated or found in clusters (Onishi and Ueda,

2005; Yu et al., 2006). There is experimental evidence connecting

miRNA cluster expression to different types of cancers, such as

lung cancer, lymphoma, and leukemia (Tanzer and Stadler, 2004;

Hayashita et al., 2005; Legendre et al., 2005; Onishi and Ueda,

2005; Tagawa and Seto, 2005). Moreover, miRNAs have been

implicated in tissue morphogenesis, cellular processes like apo-

ptosis, and major signaling pathways linking its possible role in

health and disease ( Jin et al., 2004; Mendell, 2005). There are

four possible mechanisms by which miRNA can lead to disease

(Plasterk, 2006): (i) a miRNAmay acquire a mutation resulting in

loss of function; (ii) a miRNAmay acquire a mutation resulting in

gain of function; (iii) a programmed target site may acquire a

mutation and no longer be able to bind to the miRNA; and (iv) a

gene may acquire a new and undesired miRNA target sequence

that will result in silencing. These proposed mechanisms are

hypothetical and remain to be fully validated in biological ex-

periments. For example, gain and loss of miRNA target sites

appears to be causal to some genetic disorders (Kloosterman and

Plasterk, 2006). Furthermore, proteins participating in the bio-

genesis of miRNA can be candidates for disease cause. One

of such protein, DGCR8 (discussed later), is commonly missing

in DiGeorge syndrome. This syndrome involves heterogeneous

defects, includingcardiacdeficiencies, immunodeficiency, schizo-

phrenia, obsessive-compulsive disorder, and more (Alvarez-

Garcia and Miska, 2005). In addition to host miRNA, there are

studies connecting viral pathogenesis to miRNA produced by

viruses that can influence either the pathogen itself or the infected

host (Omoto et al., 2004; Burnside et al., 2006).

BIOGENESIS OF MIRNA

Gene expression starts with transcription. Initially it was be-

lieved that the transcription of miRNA is mediated by RNA

polymerase III, because it transcribes most of the small RNAs.

However, primarymicroRNAs (pri-miRNAs) are sometimes sev-

eral kilobases long and contain stretches ofmore than four uracils,

which would have terminated transcription by polymerase III.

Lee et al. (2004) have concluded that miRNA transcription is

accomplished by RNA polymerase II. The miRNA is first tran-

scribed as hundreds- to thousands-nt-long miRNA precursor
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called primary miRNA. Analysis of several pri-miRNA

precursors has shown that they all contain a 50 7-methyl guanosine

cap and a 30 poly-A tail. Therefore, this data indicates that pri-

miRNAs are structurally analogous to mRNA (Cullen, 2004).

Following transcription, the miRNA goes through the first

step of cleavage. It is initiated by the nuclear RNase III Drosha, a

double-stranded RNA (dsRNA) specific endonuclease that in-

troduces staggered cuts on each strand of the RNA helix (Lee

and Kim, 2005). It is responsible for the nuclear processing of

the pri-miRNA into stem-loop (hairpin shaped) precursors of

*70-nt named precursor miRNA (pre-miRNA). RNA inter-

ference of Drosha results in the strong accumulation of pri-

miRNA, and the reduction of pre-miRNA and mature miRNA

in vivo (Lee et al., 2003). RNA stem-loops with a large, un-

structured terminal loop (above 10 nt) are the preferred sub-

strates for the cleavage of Drosha (Zeng et al., 2005). In the

nucleus, Drosha functions as a large complex where it interacts

with DGCR8 (an essential cofactor for Drosha), which contains

two dsRNA-binding domains (Han et al., 2004; Yeom et al.,

2006). Recombinant human Drosha alone shows non-specific

RNase activity, but the addition of DGCR8 renders it specific for

pri-miRNA processing (Tomari and Zamore, 2005). The pri-

mary and secondary structures of miRNA precursors are con-

served as internal loops and bulges that commonly appear in

specific positions in the miRNA stem. This enables correct en-

zymatic processing leading to the maturation of the miRNA

(Saetrom et al., 2006).

Export of the pre-miRNA from the nucleus to the cytoplasm is

mediated by Exportin 5 (Yi et al., 2003). It is a nuclear export

receptor for certain classes of dsRNA, including pre-miRNA,

viral hairpin RNA, and some tRNA (Chen et al., 2004). The

depletion of nuclear guanosine triphosphate (GTP)–bound Ran

(RanGTP) impairs the export of pre-miRNA. It is therefore

thought that the function of Exportin 5 is dependent on nuclear

RanGTP (Bohnsack et al., 2004). Once in the cytoplasm, the

exported complex is disassembled by GTP hydrolysis (Mat-

suura and Stewart, 2004). In addition to supporting nuclear

export of pre-miRNA, Exportin 5 likely prevents nuclear pre-

miRNA degradation (Zeng and Cullen, 2004).

The second step of miRNA processing is confined to the cy-

toplasm (Lee et al., 2002). The pre-miRNA goes through an-

other cleavage step executed by Dicer. Dicer is a multi-domain

ribonuclease that processes the hairpin precursor into a *22-nt

small dsRNA mature miRNA (Kolb et al., 2005). Dicer func-

tions through intra-molecular dimerization of its two RNase III

domains, assisted by the flanking RNA binding domains, PAZ

FIG. 1. Outline of miRNA biogenesis. Primary microRNA (pri-miRNA) is synthesized in the nucleus by RNA polymerase II.
The RNA endonuclease Drosha and its cofactor DGC48 cleave pri-miRNA to produce precursor miRNA that is about 70
nucleotides (nt) long. This product is exported to the cytosol by Exportin 5 where it is cleaved again by the second RNA
endonuclease Dicer to form the approximately 20–22-nt-long mature miRNA. One of the double-stranded miRNA is incorporated
to the RNA-induced silencing complex, where by base matching with the 30 untranslated region end of mRNA, it captures the
target mRNA in the complex. This causes inhibition of translation by the ribosome.
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and dsRNA-binding domains (dsRBD), that generate products

with 2-nt 30 overhangs (Zhang et al., 2004). PAZ domains are

highly conserved domains of 130 amino acids that bind to RNA

found only in Dicer and Argonaut proteins (discussed later)

(Carmell and Hannon, 2004).

Following cleavage of the pre-miRNA by Dicer, the mature

miRNA is incorporated into an RNA-induced silencing complex

(RISC) whose diverse functions can include mRNA cleavage,

translation suppression, transcriptional silencing, and hetero-

chromatin formation (Andl et al., 2006) (Fig. 1). This complex

functions in RNAi as well. RISC is a multiple-turnover enzyme

complex, meaning that miRNA can direct multiple rounds of

target cleavage, once incorporated. One strand of the double-

stranded miRNA is preferentially incorporated into RISC de-

pending upon the thermodynamics of the duplex. It has been

proposed that a*500 kDa trimeric protein complex made up of

Dicer, human immunodeficiency virus transactivating response

RNA-binding protein (TRBP), and Argonaute2 (Ago2) is re-

quired for the biogenesis of miRNA (Gregory et al., 2005).

There is evidence that the complex forms prior to miRNA

loading (Maniataki and Mourelatos, 2005). TRBP is a protein

with three dsRBDs that are essential for the processing of

miRNA (Haase et al., 2005). Ago2 is amember of the Argonaute

protein family and the only member in humans that is associated

with both siRNA and miRNA silencing. It serves as the catalytic

engine of RISC by virtue of a PIWI domain that contains an

RNase H-like structure for its endonucleolytic-slicer activity

(Sontheimer and Carthew, 2004; Miyoshi et al., 2005). Ago2 is

essential for mouse development, and cells lacking Ago2 fail

to respond to siRNA. Moreover, mutations within the RNase H

domain of Ago2 inactivate RISC supporting its fundamental

role in miRNA-induced mRNA silencing (Rand et al., 2005).

In mammals, imperfect match between miRNAs and their

target mRNA is commonly noted. As a result, in mammals

miRNAs are primarily responsible for translational inhibition

of mRNA (Fig. 1). RISC containing miRNA may directly in-

terfere with translation initiation or elongation, and perhaps

target the mRNA to centers of degradation. These centers,

which contain untranslated mRNA, are sites of mRNA degra-

dation. They have been previously observed in yeast and ani-

mal cells and are called processing (P) bodies (Jabri, 2005).

Supporting this notion is the evidence of the presence of Ar-

gonaute family proteins in these P-bodies. However, it is not

clear whether P-bodies are a cause or a consequence of in-

hibiting protein synthesis. RCK/p54 is the effector molecule in

miRNA-RISC that represses translation (Chu and Rana, 2006).

RCK/p54, the human homolog of yeast Dhh1p, is a P-body

protein and a member of the ATP-dependent DEAD box he-

licase family. In human cells, RCK/p54 interacts in P-bodies

with the translation initiation factor, eIF4E. The overall result

of the binding of mRNAs in the RISC complex by their

matching miRNA is inhibition of translation of the mRNA.

This, in turn, leads to decreased levels of the protein encoded

by the target mRNA for any given miRNA (Fig. 1).

MIRNA IN SKIN MORPHOGENESIS

The skin is the largest organ of the body, accounting for about

15% of the total body weight in adult humans (Kanitakis, 2002;

Healy, 2005). In brief, the skin is made up of three distinct layers

of tissue: epidermis, dermis, and hypodermis. The mammalian

epidermis is a stratified epithelium layer that retains the ability

to self-renew under both homeostatic and injury conditions by

maintaining a population of mitotically active cells in the hair

follicles and innermost basal layer (Segre, 2006). It is populated

by keratinocytes (80%) and other cell types, such as den-

dritic cells, melanocytes, Langerhans, and Merkel cells. The

dermis consists of collagenous and elastic fibers embedded in an

amorphous ground substance. It is populated by fibroblasts,

macrophages, mast cells, and lymphocytes. The hypodermis is

composed of adipocyte lobules defined by fibrous connective

tissue septa. In addition, the skin contains hair follicles. De-

velopmentally, hair follicles represent an outgrowth of the

primitive epidermis (Stenn, 2003). It has a very complex

structure and consists of over 20 different cell types distributed

into six main compartments, namely the connective tissue

sheath, the dermal papilla, the outer root sheath, the inner root

sheath, the shaft, and the sebaceous gland. These compartments

lie within the dermis and the epidermis (Bernard, 2005).

Moreover, the hair follicle has a reservoir of pluripotent stem

cells that can also regenerate the epidermis (Lavker et al., 2003;

Ma et al., 2004). The skin is responsible for many functions,

such as epidermal barrier and defense, immune surveillance, UV

protection, thermoregulation, sweating, lubrication, pigmenta-

tion, the sensations of pain and touch, and the protection of

various cutaneous stem cell niches (Ross and Christiano, 2006).

Nevertheless, the most crucial function of the skin is to defend

the body as a barrier interface between the internal organs and

the environment. This barrier function of the skin is critical in

newborn animals, as shown by transgenic animal models with

barrier defects that die shortly after birth from transepidermal

water loss (Segre, 2003).

It is fortunate that in this early phase of miRNA research,

one of the organs about which we know more than most others

is skin. Recent works on the significance of miRNA in skin

morphogenesis and development provide important insight that

lays the foundation for wound healing research. Our laboratory

has initiated a project specifically directed to address the sig-

nificance of miRNA in cutaneous wound healing. Recent works

by the Fuchs laboratory have addressed the role of miRNA in

mouse skin epidermis and hair follicle (Yi et al., 2006). First,

after isolating RNA they cloned and sequenced small RNA and

found that most of them correspond to known mouse miRNA.

They characterized the relative miRNA levels in these tissues

and discovered that many skin miRNAs are differentially ex-

pressed by epidermal and hair follicle lineages. There were

distinctive expression patterns of miRNAs in these two tissues.

In both, the most abundant miRNA was mmu-miR-16. This

miRNA is abundant in most tissues of the body (Krutzfeldt

et al., 2005). In addition, many skin miRNAs could be clas-

sified into discrete groups on the basis of similar 50 seed se-

quences, although they were transcribed from distinct genomic

loci. These data support the notion that target mRNAs in the

skin are efficiently regulated by miRNAs.

Testing of the significance of miRNAs in skin development

has led to very interesting findings. The Dicer-deficient mouse

model has been informative (Yi et al., 2006). Dicer was con-

ditionally knocked out in skin epithelial progenitor cells. Be-

cause Dicer is one of the key enzymes in the processing of
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miRNA to functional mature miRNA, ablation of Dicer arrests

mechanisms triggered by mature miRNA. The conditional

knockout animals began to lose weight within 1–2 days after

birth, and neonatal conditional knockout mice appeared dehy-

drated and did not survive past postnatal day 4–6. The most

striking histological finding in the skin was that instead of

invaginating downward into the dermis, hair germs appeared to

evaginate into the epidermis. With age, hair germ–like cysts

became prevalent markedly distorting the overlying epidermis.

In addition, skin of the conditional knockout showed signs of

apoptosis although there were larger numbers of cells in the

follicles of conditional knockout mice. This continual upward

proliferation of follicle cells grossly perturbed the integrity of

the skin of the mutant mice. Cyst-induced epidermal pertur-

bations likely accounted for the loss of weight, dehydration,

and eventual death of the Dicer1 conditional knockout animals.

It is clear that miRNAs play a critical role in skin morpho-

genesis. Furthermore, the essential role of skin in life and death

was evident (Yi et al., 2006).

In a study that utilized the skin as a model system to in-

vestigate the functions of Dicer in mammalian organogenesis,

it was first discovered by in situ hybridization of mouse em-

bryos and mouse literates that Dicer is present in both

epidermis and hair-follicle outer root sheath (Andl et al., 2006).

To determine whether Dicer is required for the development of

hair follicles or epidermis, epidermal-specific deletion of the

Dicer gene was performed in mice. This was achieved by

crossing Dicer flox mice with a transgenic mouse line in which

Cre recombinase was expressed under the control of a keratin

14 promoter. In agreement with the former study, here, new-

born Dicer mutant mice were initially grossly indistinguishable

from control littermates. However, by postnatal day 7, mice

were stunted and lacked external hair growth with poor

viability of the mutant mice. Evagination of the epidermis by

hair follicles was noted. In addition, hair follicles were also

replaced by cyst-like structures or disorganized clumps of ep-

ithelial cells within the dermis. Examination of the molecular

details revealed that expression of the progenitor cell marker

Keratin 15 was absent in the skin of newborn Dicer mutant

(Andl et al., 2006). Keratin 15 is a specific marker for hair-

follicle stem cells, although its significance is not yet known. In

contrast to the findings in the mutant hair follicles, epidermis of

the Dicer mutant displayed marked elevation in the numbers of

both basal and supra-basal cell-layers compared with the

epidermis of control littermates. Interestingly, the expression of

Notch1 [a trans-membrane receptor that once signaled activates

transcription (Wilson and Radtke, 2006)] was reduced in the

epidermis as well as in the hair follicles of Dicer mutant mice.

Deletion of Notch1 in the epidermis causes hyperproliferation

and tumor development, suggesting that the observed decrease

in Notch1 expression in the Dicer mutant could contribute to

the epidermal phenotype (Proweller et al., 2006). Furthermore,

it has been noted that embryonic as well as postnatal inacti-

vation of Notch1 shortly after birth or in adult mice results in

almost complete hair loss followed by cyst formation (Vauclair

et al., 2005). This may lead to the hypothesis that Notch1 is the

key protein that is affected in the Dicer knockouts leading to

abnormalities in hair follicle that will sequel in skin layer

impaired morphogenesis and eventually end in transdermal

water loss and death. Another phenomenon in the mutant skin

was the appearance of clusters of dermal cells, apparently in

the process of being surrounded by epidermal cells. Because

K14-Cre does not cause recombination of the Dicer flox allele in

dermal cells, this phenotype must be because of Dicer defi-

ciency in the epidermis or hair follicle epithelium. These studies

by the groups of Elaine Fuchs and Sarah Millar provide first

evidence describing the fundamental role of miRNA in skin

tissue morphogenesis. The stage is now set for testing the sig-

nificance of miRNA in skin-related diseases, including wound

healing. miRNA-based therapies may be expected in the near

future.

WOUND HEALING AND ANGIOGENESIS

Wound healing may be broadly split into three overlapp-

ing basic phases: inflammation, proliferation, and maturation

(Broughton et al., 2006b). First in sequel, the inflammatory

phase is characterized by hemostasis and inflammation. The

next phase consists mainly of epithelialization, angiogenesis,

granulation tissue formation, and collagen deposition. The final

phase includes maturation and remodeling. This phase is char-

acterized by an organized deposition of collagen (Broughton

et al., 2006a). The complexity of wound healing is augmented

by the influence of local factors (such as ischemia, edema, and

infection) and systemic factors (such as diabetes, age, hypo-

thyroidism, malnutrition, obesity, and more) (Harvey, 2005).

Angiogenesis is often identified as the rate-limiting step of

wound healing (Lingen, 2001). Wound angiogenesis is marked

by endothelial cell migration and capillary formation where the

sprouting of capillaries into the wound bed is critical to support

the regenerating tissue. The granulation phase and tissue depo-

sition require nutrients supplied by the capillaries. Impairments

in wound angiogenesis therefore may lead to chronic problem

wounds (da Costa Pinto and Malucelli, 2002; Galeano et al.,

2003; Chbinou and Frenette, 2004).

Expression of the angiogenic phenotype is a complex process

that requires a number of cellular and molecular events to occur

in sequential steps. Some of these activities include endothelial

cell proliferation, degradation of surrounding basement mem-

brane, migration of endothelial cells through the connective

tissue stroma, formation of tube-like structures, and maturation

of endothelial-lined tubes into new blood vessels. Angiogenesis

is controlled by positive and negative regulators (Li et al., 2005).

In addition to endothelial cells, cells associated with tissue re-

pair, such as platelets, monocytes, and macrophages, release

angiogenic growth factors into injured sites that initiate angio-

genesis. Vascular endothelial growth factor (VEGF) is believed

to be the most prevalent angiogenic factor in the skin repair

process during wound healing (Sayan et al., 2006). The signifi-

cance of the VEGF family in wound angiogenesis has been

recently described elsewhere (Roy et al., 2007).

MIRNA AND ANGIOGENESIS

At present, the significance of miRNA in cutaneous wound

healing remains unpublished. In this section, literature that di-

rectly addresses the role of miRNA in angiogenesis has been

reviewed with the objective to highlight the potential signifi-

cance of studying miRNA in the context of wound angiogenesis.
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The Dicer gene is significantly expressed in embryos from day

11 and remains constant through day 17, evenly expressed

throughout the embryonic tissues (Yang et al., 2005). To further

determine the in vivo function of Dicer during development, the

dicerex1/2mutant mice model has been developed. These mutant

mice lack the first two exons of dicer that are essential for the

function of the protein, that is, maturation of miRNA. Homo-

zygous mutant mice were not viable; therefore, the embryos

were examined. Starting from embryonic day 11.5, virtually all

dicerex1/2 embryos were growth- and developmentally-retarded

as compared with their wild-type or heterozygous litter mates

(Yang et al., 2005). The embryos that were still viable at this

stage had thin and sub-optimally developed blood vessels,

providing first evidence for the involvement of miRNA in an-

giogenesis. Moreover, microscopic examination of the yolk sac

from mutant embryo revealed that there were fewer blood ves-

sels in the dicerex1/2 yolk sacs and that these vessels were thin,

small, and less organized than those of control yolk sacs. To-

gether, these observations lead to the hypothesis that Dicer is

required for the development of blood vessels during embryo-

genesis. When yolk sacs from 11.5-day embryos were stained

with anti-PECAM antibodies specific to endothelial cells, it was

noted that the blood vessels in dicerex1/2 yolk sacs were thin and

disorganized compared to their healthy controls. The vascular

defects found in the Dicer mutant embryo led to question the

levels of key angiogenic genes in the mutant mice. Interestingly,

mRNA levels of VEGF and the genes of its receptors, Flt1 and

Kdr, were significantly higher than those in wild-type embryos.

Although this finding seems to predict favorable angiogenic

environment in the mutant mice, the actual observation was

in direct contrast. Results of the experiment suggest that up-

regulation of the VEGF signaling pathway alone may not lead to

functional angiogenesis. Furthermore, it seemed likely that the

VEGF signaling path is under repressor control by miRNA-

dependent mechanisms. Other explanations of the observation

include a compensatory up-regulation of the VEGF system in

the face of impaired angiogenesis or induction of other pro-

VEGF signaling pathways such as that driven by hypoxia

(Gerber et al., 1997). In dicerex1/2mutant mice, the mRNA level

of tie-1, a receptor tyrosine kinase gene, was lower than in

corresponding wild-type mice. Tie-1 is a member of the tie re-

ceptor family that is required for the angiogenic remodeling of

vessels during embryonic development and for the stabilization

of blood vessel in quiescent adult vasculature ( Jones et al.,

2001). Taken together, studies with the dicerex1/2 mutant mice

present compelling evidence that arrest of mature miRNA-

dependent mechanisms impair angiogenesis in vivo (Yang et al.,

2005).

The field of miRNA and cancer has developed rapidly (Calin

and Croce, 2006; Cummins and Velculescu, 2006; Dalmay and

Edwards, 2006; Mocellin et al., 2006; Pfeffer and Voinnet,

2006; Silveri et al., 2006; Tomaru and Hayashizaki, 2006).

Unlike wound healing research where we practically know

nothing about the significance of miRNA in wound angio-

genesis in vivo, the role of miRNA in tumor angiogenesis has

been directly addressed. c-myc is a leucin zipper transcription

factor that has been found to have a role in neo-vascularization

of neoplasms (Brandvold et al., 2000). miRNAs are implicated

in the regulation of the c-myc pathway (Dews et al., 2006).

c-myc does not seem to induce angiogenic pathways. Instead,

c-myc seems to down-regulate anti-angiogenic factors, such as

thrombospondin-1 (Tsp-1) and connective tissue growth factor

(CTGF). This observation is consistent with previous obser-

vations that c-myc down-regulates Tsp1 not by blocking pro-

moter activity, but by decreasing Tsp1 mRNA half-life (Janz

et al., 2000). Recently it has been established that c-myc di-

rectly activates the miRNA cluster miR-17-92 in human lym-

phocytes (O’Donnell et al., 2005). We now know that levels of

miRNAs miR-18 and miR-19, which are the cleavage products

of the miR-17-92 cluster, are up-regulated by c-myc as well

(Dews et al., 2006). To further elucidate the direct effect of

c-myc on these miRNA, transfection of antisense oligonucle-

otides to individual miRNA has been performed. miR-19 is

primarily responsible for the down-regulation of Tsp1, and

miR-18 for the down-regulation of CTGF in response to c-myc.

Thus, a substantial role of miRNA in regulating c-myc-

dependent tumor vascularization has been unveiled. This con-

stitutes first evidence supporting the involvement of specific

miRNA in angiogenesis.

Support for our call to study the significance of miRNA in

wound angiogenesis has been provided by a recent work ad-

dressing the role of miRNA on the angiogenic properties of

human umbilical vein endothelial cells (HUVEC) (Poliseno

et al., 2006). Twenty-seven abundant miRNAs have been

identified in these endothelial cells. Prediction algorithms have

been utilized to look for angiogenic receptors that may be

target candidates of the miRNAs identified in HUVEC. miR-

221 and miR-222 were predicted to target c-kit. c-kit is a re-

ceptor tyrosine kinase that binds stem cell factor (SCF). Inhi-

bition of c-kit results in down-regulation of VEGF expression

(Litz and Krystal, 2006). Moreover, it has been shown that

c-kit is involved in neovascularization and tumor progression.

Arresting c-kit results in tumor containment (Strumberg, 2005;

Roboz et al., 2006). In wounds, the expression of c-kit in mast

cells is induced slowly when healing, while in chronic wounds

as well as in psoriatic lesions, c-kit is intensely expressed

(Huttunen et al., 2002). Transfection of miR-221/222 mix de-

creased c-kit protein levels without changing the mRNA level.

In addition, the transfection inhibited the ability of endothelial

cells to promote tube formation in response to activation by

SCF. Furthermore, introducing miR-221/222 mix to HUVEC

diminished SCF-induced survival. Thus, miR-221 and miR-222

modulate the angiogenic activity of SCF by modulating the

level of its receptor c-kit. This is valuable information although

very preliminary and only demonstrated in vitro (Poliseno et al.,

2006).

It is clear from in vivo studies of experimental Dicer knock-

down discussed earlier that miRNAs play a fundamental role in

the biology of skin morphogenesis and angiogenesis (Fig. 2).

Although many questions remain to be addressed, explaining

how miRNAs are involved in wound healing and related an-

giogenesis, it is critically important to realize that the study of

cutaneous wound healing is incomplete without appreciating the

functional significance of miRNA. A mature understanding of

the molecular processes and the role of miRNA in cutaneous

wound healing biology will unveil new andmodified therapeutic

strategies.

Interestingly, in the field of skin and wound healing,

antisense-hypoxia inducible factor (aHIF) (Thrash-Bingham

and Tartof, 1999; Rossignol et al., 2002; Cayre et al., 2003)
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could well be an miRNA. HIF1 is one of the main genes regu-

lating the molecular responses to hypoxia. HIF1 is composed

of two subunits. HIF1b is constitutively expressed. However,

HIF1a is controlled by oxygen tension and is degraded under

normoxic conditions. Hypoxic conditions with partial pressure

of oxygen lower than 40 torr lead to HIF1� accumulation,

translocation to the nucleus, and, as a result, transcriptional

activity through binding to specific hypoxia-responsive ele-

ments (Diaz-Gonzalez et al., 2005). This leads to the expression

of oxygen-dependent genes (Albina and Reichner, 2003). In ex-

perimental skin wound models, it is known that hypoxia up-

regulates HIF1� (Vihanto et al., 2005). The expression of HIF1 in

wounds may induce inducible nitric oxide synthase and VEGF,

two HIF1-responsive genes intimately related to the process of

repair (Albina et al., 2001). In 1999, aHIF was reported as a

natural antisense transcript of HIF. aHIF sequence is comple-

mentary to the sequence in the 30 UTR of HIF1�mRNA (Thrash-

Bingham and Tartof, 1999). aHIF is present in human adult as

well as fetal tissue (Rossignol et al., 2002). In breast cancer pa-

tients, aHIF, not HIF1� transcript, served as a reliable marker of

poor prognosis (Cayre et al., 2003). Unlike miRNA, aHIF is more

than 1 kb long and complements HIF1� for almost all of its

length. Thus, aHIF is not an miRNA. Of note, aHIF is non-coding

and is functionally analogous to miRNA. These observations

suggest that there may be another non-coding entity of longer

RNA, which regulates mRNA transcription like miRNA.

MIRNA-BASED THERAPEUTICS:
FUTURE POTENTIAL

RNAi-based therapeutics represents one of the hottest novel

avenues in biomedical treatment (Boudreau and Davidson,

2006; Ke et al., 2006; Ketzinel-Gilad et al., 2006; Storvold

et al., 2006; Waseem, 2006). miRNA-based therapies represent

a sub-discipline that holds significant promise (Weiler et al.,

2006; Ying et al., 2006; Liu et al., 2007). The ability to

modulate miRNA activity in vivo is likely to have tremendous

impact on disease therapy and on in vivo research opportuni-

ties. Initial efforts in this direction are in motion. There are two

major options available: over-expression and silencing of the

prospective miRNA. For the former, delivery of corrective

synthetic miRNA in the form of (siRNA-like) dsRNA may be

productive. For a disease phenotype caused by abnormal

miRNA-dependent inhibition of a specific subset of mRNA,

oligonucleotides complementary to either the mature miRNA

or its precursors can be designed such that the miRNA will be

functionally arrested and will not be able to bind the target

mRNA subset. Successful design of such oligonucleotide

should include considerations such as successful in vivo de-

livery, resistance to degradation in tissues, and specificity and

high-binding affinity to the specific miRNA in question. This

can be achieved by chemical modification of the nucleotides,

especially the addition of chemical groups to the 20-hydroxyl
group. Three forms of chemically modified oligonucleotides

that have been used as means of silencing miRNA include (a) 20-
O-methyl-group (OMe)–modified oligonucleotides; (b) 20-O-
Methoxyethyl–modified oligonucleotides that show to have

higher affinity and specificity to RNA than their OMe-analogs;

and (c) Locked nucleic acid (LNA)–modified oligonucleotides

in which the 20-O-oxygen is bridged to the 40-position via a

methylene linker to form a rigid bicycle, locked into a C30-endo
(RNA) sugar conformation (Weiler et al., 2006). Most current

data in this direction originate from in vitro studies. Results from

in vivo studies involving manipulation of tissue miRNA are

limited.

Another approach to manipulate miRNA includes genetic or

non-genetic mechanisms (Krutzfeldt et al., 2006). The genetic

approach includes (i) knockout of miRNA genes in mice, (ii)

mutation of miRNA target sites in protein-encoding genes, and

(iii) conditional alleles of the miRNA-processing gene Dicer1

leading to deficiency of all mature miRNA. The non-genetic

approaches may be broadly divided into two categories: anti-

sense oligonucleotide (ASO) (Esau et al., 2006) and antagomirs

(Krutzfeldt et al., 2005). 20-O-Methoxyethyl phosphorothioate–

modified ASO represents an effective tool to silence miRNA

such asmiR-122. Intraperitoneal injection of ASOwas sufficient

to achieve the desired results. Verification of miR-122 silenc-

ing was additionally proven by the increase of mRNA levels of

four target genes of miR-122. No target mRNA changes were

observed in mice treated with control ASO, demonstrating

specific inhibition of miR-122. The ASO approach has been

applied to a disease model of obesity in mice. C57Bl/6 mice

that had been fed a high-fat diet for 19weeks were treated with

FIG. 2. Lessons from the Dicer knockdown mouse model.
In Dicer knockdown mice, processing of precursor miRNA to
mature miRNA is arrested. In the global knockout model, the
most aberrant phenomenon was impaired embryonic angio-
genesis that led to embryonic death. In the conditional skin
Dicer knockout model, impaired skin morphogenesis was fol-
lowed by early neonatal death of mice.
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miR-122 ASO. Blocking miR-122 resulted in 35% decrease

of plasma cholesterol levels compared to control mice (Esau

et al., 2006). Antagomirs are chemically modified, cholesterol-

conjugated, single-stranded RNA analogues designed to be

complementary to specific miRNA. Antagomirs are synthe-

sized starting from a hydroxyprolinol-linked cholesterol solid

support and 20-OMe phosphoramidites (Krutzfeldt et al., 2005).

Intravenous injection of antagomir-122 specifically decreased

miR-122 levels. Antagomir-122 (240mg per kg body weight)

resulted in a complete loss of miR-122 signal, and levels of

miR-122 were undetectable for as long as 23 days after in-

jection. Antagomir-16 effectively silenced miR-16 in all body

tissues, besides the brain. Therefore, antagomirs are useful

in silencing miRNA in vivo. Silencing miR-122 resulted in

down-regulation of 3-hydroxy-3-methylglutaryl-CoA-reductase

(Hmgcr), a rate-limiting enzyme of endogenous cholesterol

biosynthesis. In agreement with the last finding, plasma cho-

lesterol levels were decreased more than 40% in antagomir-

122–treated animals. Moreover, antagomir injection did not

seem to have any toxic effect. This aspect of antagomir biol-

ogy needs more rigorous testing, however. Thus, antagomirs

represent useful tools to silence miRNA in vivo and offer a new

platform for studying miRNA and related therapeutic opportu-

nities (Krutzfeldt et al., 2005).

In vivo over-expression of miRNA is another related area of

outstanding importance. Pre-miR-1 plus its flanking sequence

has been sub-cloned into a-MHCclone26 or b-MHCclone32

vectors, and introduced into mice (Zhao et al., 2005). Northern

blots of the transgenic mice confirmed that they expressed

miR-1. Western blot demonstrated a significant decrease in

Hand2 protein levels compared with non-transgenic litter-

mates, while mRNA levels of Hand2 remained unchanged. This

observation confirmed that Hand2 is an miR-1 target in vivo

and that up-regulation of a single miRNA using its precursor

can elevate specific protein levels. Studies ongoing in our

laboratory have led to the observation that cutaneous wound

healing involves changes in the expression of specific miRNA

at specific phases of wound healing. We hypothesize that dys-

regulation of specific miRNA is critical in derailing the healing

sequence in chronic problem wounds (Fig. 3). If tested posi-

tive, the hypothesis is likely to lead to novel diagnostic and

therapeutic strategies for the treatment of problem wounds.

FIG. 3. Overall hypothesis to examine the significance of miRNA in cutaneous wound healing. In healthy subjects, wound
induces a specific pattern of miRNA expression, which in turn regulates overall gene-product responses to healing. Such response
favors healing responses, including wound angiogenesis, and finally leads to successful healing. In diseased subjects, wound
induces the expression of a different pattern on miRNA expression. Such unfavorable response tilts the wound-induced expression
of gene-products such that the healing process is stalled resulting in chronic problem wound. Prolonged lack of barrier function of
the skin causes infection and further complicates healing.
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