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Payne PRO, Embi PJ, Sen CK. Translational informatics: enabling high-
throughput research paradigms. Physiol Genomics 39: 131–140, 2009. First
published September 8, 2009; doi:10.1152/physiolgenomics.00050.2009.—A com-
mon thread throughout the clinical and translational research domains is the need
to collect, manage, integrate, analyze, and disseminate large-scale, heterogeneous
biomedical data sets. However, well-established and broadly adopted theoretical
and practical frameworks and models intended to address such needs are conspic-
uously absent in the published literature or other reputable knowledge sources.
Instead, the development and execution of multidisciplinary, clinical, or transla-
tional studies are significantly limited by the propagation of “silos” of both data and
expertise. Motivated by this fundamental challenge, we report upon the current
state and evolution of biomedical informatics as it pertains to the conduct of
high-throughput clinical and translational research and will present both a concep-
tual and practical framework for the design and execution of informatics-enabled
studies. The objective of presenting such findings and constructs is to provide the
clinical and translational research community with a common frame of reference
for discussing and expanding upon such models and methodologies.

biomedical research

THE MODERN BIOMEDICAL RESEARCH domain has experienced a
fundamental shift toward integrative and translational meth-
odologies and frameworks over the past several years. This
shift has been manifested in a number of ways, including the
launch of the National Institutes of Health (NIH) Roadmap
initiative (82– 84), which has resulted in the creation of the
Clinical and Translational Science Award (CTSA) program
(83), as well as the rapid growth and increasing availability
of high-throughput biomolecular technologies and corre-
sponding bio-marker-to-phenotype mapping efforts (11). A
commonly reported thread in a broad variety of reports and
commentaries concerned with this evolution focuses on the
challenges and requirements related to the collection, man-
agement, integration, analysis, and dissemination of large-
scale, heterogeneous biomedical data sets (19, 25, 58, 72).
However, well-established and broadly adopted theoretical
and practical frameworks intended to address such needs are
still conspicuously lacking in the published literature or
other reputable knowledge sources (14, 46, 58). Instead, the
development and execution of integrative clinical or trans-
lational research are significantly limited by the propagation
of “silos” of both data and expertise. Motivated by this
fundamental challenge, the remainder of this manuscript
will present the findings of a four-phase approach to define
the current state and practice of clinical/translational science
and its intersection with biomedical informatics.

METHODOLOGY

As noted in the introduction and illustrated in Fig. 1, the
phases and associated findings of the four phase approach used
to develop this manuscript can be broadly divided into the
following four categories: 1) a review of the current state of
biomedical informatics as it pertains to the conduct of high-
throughput clinical and translational research, with an empha-
sis on key definitions and critical information management
challenges; 2) the definition of a conceptual framework for
translational informatics that is intended to foster greater inte-
gration of the biomedical informatics and the clinical or trans-
lational research domains, informed by the exemplary experi-
ences of the authors and a number of contributory literature
reviews; 3) the definition of a practical model for the design
and implementation of translational informatics projects; and
4) a synthesis of the preceding research products and an
associated set of recommendations concerning how to fully
realize the potential benefits afforded by systematic approaches
to translational informatics in the contemporary biomedical
research environment. Our objectives in presenting these find-
ings are to: 1) introduce researchers who are new to the clinical
and translational science domains to the basic concepts, chal-
lenges, and informatics-related tools and methods incumbent to
their domain; and 2) provide experienced clinical, translational,
and informatics researchers with a broad framework in which
to situate their current work and to identify potentially novel
linkages between their efforts and emerging challenges and
opportunities in the translational informatics domain. This
work is not intended to serve as a comprehensive review of the
current state of knowledge in the clinical or translational
research informatics domains, an area recently addressed in a
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number of published reports and manuscripts (8, 19, 25, 58, 63,
64, 72).

DEFINITIONS AND INFORMATION MANAGEMENT CHALLENGES IN
CLINICAL AND TRANSLATIONAL RESEARCH

Working Definitions

To provide sufficient context and scope to our ensuing
discussion, we will define translational research per the
conventions provided by the NIH as follows:

“Translational research includes two areas of translation.
One is the process of applying discoveries generated during
research in the laboratory, and in preclinical studies, to the
development of trials and studies in humans. The second area
of translation concerns research aimed at enhancing the adop-
tion of best practices in the community. Cost-effectiveness of
prevention and treatment strategies is also an important part of
translational science.” (62)

Several recent publications have defined a translational re-
search cycle, which involves the translational of knowledge
and evidence from “the bench” (e.g., laboratory-based discov-
eries) to “the bedside” (e.g., clinical or public health interven-
tions informed by basic science and clinical research), and
reciprocally from the bedside back to the bench (e.g., basic
science studies informed by observations from the point-of-
care) (72). Within this translational cycle, Sung and colleagues
(72) have defined two critical blockages that exist between

basic science discovery and the design of prospective clinical
studies, and subsequently between the knowledge generated
during clinical studies and the provision of evidence-based care
in the clinical or public health settings. These are known as
the T1 and T2 blocks, respectively (Fig. 2). Much of the
work conducted under the auspices of the NIH Roadmap
initiative is specifically focused on identifying approaches
or policies that can mitigate these T1 and T2 blockages and
thus increase the speed and efficiency by which new bio-
medical knowledge can be realized in terms of improved
health and patient outcomes.

In addition to defining translational research and the trans-
lational research cycle, we will define Biomedical Informatics
per the convention provided by Shortliffe and Cimino (67) as
follows:

“Biomedical Informatics is the scientific field that deals with
the storage, retrieval, sharing, and optimal use of biomedical
information, data, and knowledge for problem solving and deci-
sion making. It touches on all basic and applied fields in biomed-
ical science and is closely tied to modern information technolo-
gies, notably in the areas of computing and communication.”

For the purposes of this article, we will be focusing primar-
ily upon the role of biomedical informatics relative to infor-
mation management challenges, frameworks, and practical
methods that may be applied to overcome the T1 translational
block (e.g., from bench to clinical research).

Fig. 1. Overview of our 4-phase approach, highlighting sources of information (input), findings, or knowledge products (output) and the relationships between
such components.
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Information Management Challenges in Clinical and
Translational Research

The benefits, challenges, and opportunities afforded by in-
tegrating biomedical informatics across the clinical and trans-
lational research spectrum are many (11, 19, 58, 72). At a high
level, the essential information management challenges to be
addressed by such integration can be classified as belonging to
one or more of the following categories.

The ability to collect and manage heterogeneous data sets
with increasing levels of dimensionality. With the ever-increas-
ing availability of high-value patient-centric phenotypic data
sources, such as electronic health records (EHRs), clinical
trials management systems (CTMS), as well as biomolecular
measurements such as genotypic and proteomic expression
profiles fed by a growing suite of instrumentation platforms,
the size and complexity of data sets that researchers can
collect, store, and retrieve on a regular basis are growing at an
exponential rate (11, 14, 34, 42, 46). At the same time, the data
management practices currently used in many basic and clin-
ical science research settings rely on the use of conventional
databases or individual file-based approaches that are ill-suited
to enabling interaction with large-scale data sets (29, 42, 64).
Therefore, the dissemination and adoption of advanced infor-
mation management platforms that allow researchers and their
staff to focus on fundamental scientific problems rather than
practical informatics needs are critical to reducing the data
management burden associated with today’s multidimensional
data (4, 14, 48, 58). In addition, with the impetus to link
high-throughput biomolecular and phenotypic data to better
understand potential relationships between variables that could
inform novel diagnostic or treatment planning approaches, it is
also imperative that the semantics of such data be well under-
stood (59, 63, 64). Such semantic interoperability between data
sets is at least if not more important to clinical and translational
research efforts as “technical” or “syntactic” interoperability.
Achieving semantic interoperability requires the use of infor-
matics-based approaches to map among various data represen-
tation schemas and to use those mappings to support data
integration or analysis operations (63, 64). For example, if a
variable of interest in a genomic data set is encoded with the
name of the probe used to measure the expression level of a
particular gene, and a phenotypic variable that is concerned
with production of a protein encoded by that same gene is
labeled using the name of that protein, then it is necessary to
use one or more ontologies or terminologies to ascertain that
the two variables ultimately resolve to a relationship anchored
upon a shared gene.

The need to employ knowledge-anchored methods to dis-
cover and test hypotheses concerning linkages between phe-
notypic and biomolecular variables of interest. Given the
high-throughput data sets described in the preceding challenge,
a corresponding high-throughput hypothesis discovery and
testing challenge also exists. Contemporary approaches to
hypothesis discovery and testing primarily rely upon the intu-
ition of the individual investigator or his/her team to pose a
question and then carry out testing to validate or refine that
question (11, 13). Such an approach is often feasible when
working with data sets comprising up to hundreds of variables,
where a researcher or team member can reasonably possess
enough domain knowledge to understand and hypothesize
about them. However, as data sets expand by multiple orders of
magnitude to incorporate thousands or even millions of vari-
ables, such an approach quickly becomes intractable due to
inherent human cognitive limitations (59, 64). At the same
time, relevant domain knowledge needed to reason upon and
generate hypotheses relative to such data sets is often incor-
porated into a variety of sources, such as public databases,
terminologies, ontologies, and published literature (59). How-
ever, tools and applications that allow researchers to access and
extract this domain knowledge from such sources, and then use
those resulting knowledge extracts to induce large sets of
readily testable hypotheses relative to a targeted data set, are
still in the very preliminary stages of research and development
(59, 64). Therefore, significant additional effort is needed to
validate such tools and provide them for regular use by the
clinical and translational research community.

The provision of systematic and extensible platforms capa-
ble of expediting data integration and analysis workflows. A
third challenge in the context of integrating biomedical infor-
matics and translational research pertains to the availability of
systematic data-analytic “pipelining” tools that are capable of
supporting the definition and reuse of data analysis workflows
incorporating multiple source data sets, intermediate data anal-
ysis steps and products, and output types (52, 75). The value of
such data analysis pipelining is two-fold: 1) pipelines support
the rapid execution of complex data analysis plans that would
otherwise require multiple time- and resource-intensive manual
processes to collect and manipulate source data and 2) pipe-
lines enable the collection of meta-data describing the data
analysis process being performed. This meta-data can be used
both to better understand the outcomes of such analyses and to
ensure reproducible results and high data quality through the
documentation of all intermediate analytical processes and
products (52, 75). Recent research and development in the

Fig. 2. Translational research cycle, illustrating the T1 and T2 “translational blocks,” as described by Sung and colleagues (72).
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biomedical informatics domain has yielded highly promising
technology platforms capable of supporting such data-analytic
pipelining, such as the caGrid middleware (52). However,
despite the promise of such platforms, their adoption rates are
still relatively low, largely owing to a combination of data
ownership/security and socio-technical barriers, which will
require community-based consensus and improved understand-
ing of contributing human factors to overcome (4, 40).

Dissemination of evidence and knowledge. The fourth and
final challenge we will enumerate in the context of integrating
clinical or translational research and biomedical informatics is
the ability to disseminate the evidence and knowledge gained
during the conduct of constituent activities to the intended
end-user(s) in a resource efficient and timely manner. It is a
well-known phenomenon that the time period required to move
a basic science discovery into clinical research and ultimately
clinical or public health practice can span in excess of a decade
(14, 19, 32, 72, 84). Numerous studies have identified the
dissemination or exchange of information between various
research and operational settings (e.g., basic science, preclini-
cal investigation, clinical trials, commercialization, implemen-
tation in clinical care or public health practice) as one of the
most pressing issues contributing to long research, develop-
ment, and implementation lifecycles (14). Again, as was the
case in the context of the preceding challenges, a wide variety
of informatics platforms have been developed that are intended
to overcome these barriers, such as web-based communication
and collaboration tools, knowledge representation standards
and platforms, public data and literature registries/databases and
associated query and reporting tools, and evidence-based prac-
tice tools such as guideline delivery systems and clinical
decision support systems (19, 42, 58, 69). Of note, throughout
the clinical, translational science, and informatics communities
and their constituent bodies of literature, a lexicon that includes
the terms “dissemination” and “exchange” relative to new
knowledge and evidence is regularly used, despite the passive
nature of such descriptors. By facilitating greater adoption,
understanding, and appropriate use of the preceding informat-
ics platforms, this paradigm could shift to emphasize a more
active model, which would incorporate approaches more ac-
curately labeled as “teaching” and “learning.”

CONCEPTUAL FRAMEWORK

To overcome the previously introduced challenges, particu-
larly in the context of information-intensive, multidisciplinary
team-based clinical and translational research projects, a
framework should and must be developed to enable the cate-
gorization and conceptual integration of the major sources of
information and associated information needs involved in such
endeavors. Such a framework can ultimately assist in: 1) iden-
tifying major categories of information to be collected, man-
aged, and disseminated throughout the clinical or translational
research process and the ways in which they relate to one
another, thus enabling the development of integrative plat-
forms capable of addressing such needs in a systematic man-
ner; 2) providing individual researchers with the ability to
understand how their unique activities contribute to a broader
goal of generating new knowledge or evidence that spans
multiple domains or subdomains, thus increasing awareness of
the needs to exchange or disseminate such information in an

easily and readily consumable manner; and 3) supporting the
modeling and development of cross-cutting technology and
socio-technical approaches that are specifically targeted at
achieving high-level, translational integration spanning what
are often distinct data, knowledge and/or evidence silos.

Based upon our experiences at both The Ohio State Univer-
sity and the University of Cincinnati, as well as prior surveys
of the state of biomedical informatics relative to the clinical
and translational science domains as conducted by the authors
(25, 58), we have developed a prototype for such a framework,
which we will present in the following discussion. Central to
this framework are a number of critical information types
involved in the conduct of clinical and translational research,
as enumerated below and illustrated in Fig. 3.

Individual and/or population phenotype. This information
type generally involves data elements and variables that de-
scribe human and/or animal-derived characteristics at the in-
dividual or population levels that relate to the physiological
and behavioral manifestation of healthy and disease states.
Examples can include demographics, clinical exam findings,
qualitative characteristics (e.g., quality of life, disease-specific
performance status/staging), and analytic laboratory testing
results such as those commonly employed in clinical care or
equivalent activities (13). This information is primarily gener-
ated via public health, clinical care, and clinical research
operations (11, 42).

Individual and/or population biomarkers. This information
type generally involves data elements and variables that de-
scribe human and/or animal-derived characteristics at the in-
dividual or population levels that relate to the biomolecular
manifestation of healthy and disease states. Examples include
genomic, proteomic, and metabolomic expression profiles, as
well as novel biomolecular assays capable of differentiating
normal and abnormal (e.g., diseased) biomolecular structure
and function (11, 13). Such information is primarily generated
via laboratory-based studies and automated instrumentation
(11, 84, 85).

Domain knowledge. This information type comprises com-
munity-accepted or otherwise verified and validated (75)
sources of biomedical knowledge relevant to a domain of
interest. Examples of sources of such knowledge include pub-
lished literature databases, public or private databases contain-
ing experimental results or reference standards for biomolec-
ular or phenotypic measurements, and ontologies or terminol-
ogies that serve to formalize the taxonomic and semantic
descriptions of a given domain (58, 59, 75). Collectively, these
types of domain knowledge may be used to support multiple
operations, including: 1) hypothesis development, 2) hypothe-
sis testing, 3) comparative analyses, or 4) augmentation of
experimental data sets with statistical or semantic annotations
(46, 63, 75). Such information is primarily generated via the
reporting and dissemination of results, models, and data sets
from contributing basic science, clinical, and/or translational
studies (46, 75).

Biological models and technologies. Such sources of knowl-
edge consist primarily of: 1) empirically validated system or
subsystem level models that serve to define the mechanisms by
which biomolecular and phenotypic processes and their mark-
ers/indicators interact as a network (11, 38, 78, 84) and
2) novel technologies that enable the analysis of integrative
data sets in light of such models. By their nature these tools
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include algorithmic or embedded knowledge sources (38, 78).
These types of knowledge are primarily leveraged to reason
upon or otherwise analyze the preceding three knowledge types
(phenotypes, biomarkers, and domain knowledge). Such infor-
mation is usually generated via the reporting and dissemination
of results, models, and data sets from prior system-level mod-
eling efforts, and their empirical verification and validation
(19, 38, 84, 85).

Translational biomedical knowledge. Translational biomed-
ical knowledge represents a subtype of general biomedical
knowledge that is concerned with a systems-level synthesis
(i.e., incorporate quantitative, qualitative, and semantic anno-
tations) of pathophysiological or biophysical processes or func-
tions of interest (e.g., pharmacokinetics, pharmacodynamics,
bionutrition, etc.), and the markers or other indicators that can
be used to instrument and evaluate such models. This type of
knowledge is most commonly used to inform novel diagnostic,
therapeutic, or population-level interventions or measurements
that share a common goal of decreasing disease and/or increas-
ing quality of life (38, 78).

Given the preceding definitions, we can define Translational
Informatics as the informatics subdiscipline that is primarily
concerned with the development and application of biomedical
informatics theories, methods, and best practices intended to
support: 1) the acquisition of knowledge and information from
the preceding sources; 2) the representation of such knowledge
and information in an actionable format (e.g., readily con-
sumed and analyzed, usually through the use of computational
tools and applications), and the subsequent dissemination of
that knowledge or information to targeted end-users or analyt-

ical platforms; and 3) the semantic integration of disparate data
sources to support the discovery and verification/validation of
complex bio-marker-to-phenotype relationships that may col-
lectively define a translational biomedical knowledge model.

Our prototypical framework (as illustrated in Fig. 3) postu-
lates that the four knowledge types defined previously can
serve to categorize the constituent information needs and
analytical requirements of the translational research cycle.
Furthermore, the role of Biomedical Informatics, and more
specifically Translational Informatics, in this framework is to
address the four major information management challenges
enumerated earlier to generate Translational Biomedical Knowl-
edge, namely: 1) the collection and management of high-through-
put, multidimensional phenotypic and biomolecular data; 2) the
generation and testing of knowledge-anchored hypotheses rel-
ative to such data sets; 3) the provision of reproducible and
extensible data analytic pipelines; and 4) the dissemination of
knowledge and evidence generated by such translational re-
search activities. Using this framework, one can evaluate the
information needs of specific translational studies and plan for
and address such needs in a manner consistent with a broader
context of information and knowledge generation, integration,
analysis, and dissemination spanning the complete transla-
tional research spectrum.

DESIGN AND EXECUTION OF TRANSLATIONAL
INFORMATICS PROJECTS

Building upon the conceptual framework introduced in the
preceding section, we are then able to present a practical model

Fig. 3. Conceptual framework incorporating: 1) major information types and needs involved in the creation of translational biomedical knowledge and 2) a
high-level overview of the 3-phase process by which knowledge and information from each such source is utilized to enable the generation of such knowledge.
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for the design and execution of translational informatics
projects, broadly informed by the prevailing methods and best
practices being used in the National Cancer Institute (NCI)-
sponsored Cancer Biomedical Informatics Grid (caBIG) initia-
tive, as well as the National Center for Research Resources-
sponsored CTSA consortium (9, 79, 82–85).

Translational Informatics Project Phases

The design and execution of a translational informatics
project can be broadly divided into four major phases of an
overall translational informatics cycle, as described below and
illustrated in Fig. 4. For each such phase, a number of critical
inputs and outputs are required or generated, and we will
provide exemplary cases of such components for each phase.

Stakeholder engagement and knowledge acquisition. During
this initial phase of a project, the key research and operational
stakeholders who will be involved in the collection, manage-
ment, analysis, and dissemination of project-specific data and
knowledge are identified and engaged in a process of formal
and informal knowledge acquisition, with the ultimate goal of
defining the essential workflows, processes, and data sources
(including their semantics) that will be involved in addressing
a hypothesis or set of hypotheses. Such engagement and
knowledge acquisition usually involve the use of ethnographic,

cognitive science, workflow modeling, and conceptual knowl-
edge acquisition techniques (59). The results of such efforts are
usually recorded using a set of qualitative or thematic narra-
tives (21, 31, 56) and formalized workflow or process artifacts
(36, 37, 56). Major challenges that are encountered at this stage
include the identification of appropriate stakeholders and the
provision of incentives to encourage their engagement (4, 40),
the ability of such stakeholders to adequately articulate their
requirements and existing workflows/processes and/or data
resources (53–55), and the expertise of project staff as it relates
to the ability to execute such knowledge gathering and repre-
sentation activities (59). In some cases, it is necessary to
engage domain-specific subject matter experts who are not
directly involved in a given project to augment available
stakeholder generated knowledge or to validate the artifacts
and knowledge generated during this phase (56, 59).

Data identification and modeling. Building upon the arti-
facts and knowledge generated in the prior phase, the next step
in the design and execution of a translational informatics
project is the identification of specific, pertinent data sources
and the creation of models that encapsulate the physical and
semantic representation of such data. In most if not all cases,
the identification of existing or new data sources in informed
by the prior phase (stakeholder engagement and knowledge

Fig. 4. Practical model for the design and execution of translational informatics projects, illustrating major phases and exemplary input or output resources and
data sets.
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acquisition). However, in some cases, additional research must
be conducted to identify local or externally located data
sources pertinent to a project’s aims or hypotheses. Once such
data sources have been identified and catalogued, it is then
necessary to model their contents in an implementation-inde-
pendent manner, for example using a model-driven architec-
ture approach (1, 61, 68, 71, 74). Such approaches generate
data structure artifacts, often using standards such as those
found in the Unified Modeling Language (5, 24, 26, 76). In
addition, during this phase, the semantic or domain-specific
annotation of such data structures, using locally relevant and/or
standardized terminologies and ontologies, provides even
greater conceptual depth to the resulting knowledge or data
models (26, 39, 41). Furthermore, these annotations can be
later leveraged to support the interoperability of a diverse set of
data sources (41) and to support the automated generation of
hypotheses relative to a given data set and its semantics (57).

Integration and aggregation. As has been described in
preceding sections, the primary objective of translational stud-
ies is to generate and analyze integrative biomedical knowl-
edge that spans multiple levels of granularity (from biomo-
lecules to tissues and systems) and sources (e.g., public data-
bases, research databases, clinical systems, high-throughput
instrumentation, etc.). Central to the ability to perform such
analyses is the ability to integrate and aggregate such disparate
data and knowledge sources. A common theme throughout
contemporary approaches to this problem is the use of tech-
nology-agnostic domain or data models, incorporating seman-
tic annotations, to perform either federated queries (15) or to
transform data and load it into a shared data repository or
warehouse (3, 7, 23). Current technologies and tools being
used to support such operations include the caGrid data-sharing
framework and associated tools/applications (in the case of
federated queries) or the i2b2 data-warehousing platform (in
the case of the transformation and loading of data into a shared
repository) (18, 33). Given this premise, during this specific
phase of the translational informatics cycle, the artifacts, data
structures, data models, and semantic annotations generated in
prior phases, are used to create such a data “mash up” (6, 16,
17, 49, 65, 66, 81). Such mash ups are often created using a
variety of freely available and open-source reasoners and
semantic web technologies (6, 16, 17, 49, 65, 66, 81).

Analysis and dissemination. In this fourth phase of the
translational informatics cycle, the integrated data set or sets
generated in the preceding phase can be subject to analysis and
dissemination. Often, owing to the large and multidimensional
nature of such data, it is necessary to use highly specialized
data analysis platforms, such as the geWorkbench application
that has been developed as part of the NCI’s caBIG initiative
to support biomolecular expression profiling and motif detec-
tion (12) or pattern detection and cluster analysis packages
implemented within prevailing statistical packages such as R or
SAS, to identify potentially novel or informative bio-marker-
to-phenotype correlations (47, 73, 80). Of course, these are but
a few examples of a rapidly growing constellation of such tools
being generated by public and private sector contributors. In
the majority of instances, these types of analytical tools are
applied to address questions pertaining to one or more of the
following four generalizable patterns: 1) to generate test-
able hypotheses concerning relationships or patterns that may
define important correlations between phenotypic and biomo-

lecular markers (which can be derived from multiple measure-
ment or detection modalities, including laboratory instrumen-
tation, clinical data sets, and imaging) (57); 2) to evaluate the
validity of such hypotheses and the strength of their constituent
relationships or patterns of interest using community-accepted
statistical methodologies (47, 80); 3) to visualize the interre-
lationships between and physical or quantitative distribution of
variables or entities of interest within a given data set to
leverage inherent human cognitive strengths in the areas of
pattern detection and matching, thus augmenting naı̈ve or
partially guided computational pattern detection techniques (2,
22, 27); and 4) to impute or otherwise extract reproducible and
computationally tractable models capable of representing the
phenomena of interest identified via the preceding interrogative
pattern detection techniques (51, 77). The data and knowledge
generated during this phase can then be appropriately validated
(often employing a combination of quantitative and qualitative
methods) and disseminated via multiple mechanisms, includ-
ing the release of raw or synthesized data sets or knowledge
collections to public repositories and/or the generation of
publications and other human-accessible variants of experi-
mental outcomes (50, 69, 70). It is important to note that these
disseminated data and knowledge sources can in turn inform
domain-appropriate stakeholders and catalyze their engage-
ment in the initial phase of the cycle, thus creating a feedback
loop (25, 58).

Challenges and Opportunities Associated with the
Translational Informatics Cycle

Investigators and thought-leaders in the fields of clinical and
translational science and biomedical informatics will quickly
realize that the preceding description of the translational infor-
matics cycle and project planning/execution process is highly
idealized, a position shared by the authors. Any number of
challenges exist within a given setting or project that may
affect the efficacy and tractability of the methods and patterns
we have introduced. However, such challenges are exception-
ally context-specific and thus not generalizable. That being
said, based upon our review of the literature and our own
experiences, we believe that such impediments can be broadly
associated with one or more of the following three factors:

1) The inappropriate designation of purely basic science or
clinical research projects and aims as being translational,
leading to a lack of consistency between project aims and
methods and the generalized cycle and patterns introduced
previously. In reality, it is a minority of projects that are
translational in nature (20, 28, 43).

2) A lack of appropriate or necessary engagement of all key
stakeholders, including individuals with the necessary skills
and expertise, in a truly team-science construct that is mobi-
lized and incentivized to address a targeted translational re-
search problem (4, 72).

3) The absence of sufficiently robust data sets, knowledge
sources, or analytical tools capable of addressing the require-
ments of a specific research question, hypothesis, or aim (10,
30, 35, 44, 45, 60).

We believe that these challenges, instead of being obsta-
cles, represent an opportunity for the clinical and transla-
tional science and biomedical informatics communities to
mobilize themselves to address core requirements in the
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areas of clinical and translational research informatics train-
ing, methodology development, and application design, as
well as to realign institutional and broader incentivizing
structures and funding models to overcome such challenges.
While a full description of such activities and their objec-
tives is beyond the scope of this specific report, several
recent reviews and position papers have argued the preced-
ing points convincingly (10, 25, 35, 44, 58).

DISCUSSION

The holistic and systematic approach to both a conceptual
and practical understanding of translational informatics and its
role in supporting clinical or translational research, as pre-
sented in the preceding sections, is critical to both: 1) allow
informaticians to appropriately plan for, deploy, and utilize
comprehensive and integrative informatics platforms capable
of meeting the complex information management needs of the
translational research domain; and 2) allow clinical or transla-
tional researchers to better understand the broader context of
their information needs and the available informatics capabil-
ities, thus allowing them to serve as active participants in the
development and use of such platforms. Providing such a
common basis for understanding this domain is particularly
important when we consider critical characteristics of the
interactions between informaticians and clinical/translational
scientists, which can directly affect project outcomes and
success. For example, when clinical or translational researchers
serve in a purely consumer role with respect to informatics
tools due to a lack of familiarity with the domain of transla-
tional informatics, there is an associated and undesirable lack
of input and guidance in terms of their development and
verification/validation. Similarly, when informaticians serve in
a purely technical role with respect to the design and imple-
mentation of research platforms, without understanding and
leveraging a contextual basis for their utilization, less than
optimal outcomes are usually realized. It is our position that a
bidirectional collaboration between translational informati-
cians and clinical/translational researchers, informed by a
shared conceptual and practical understanding of translational
informatics, is both highly necessary and desirable relative to
the ultimate goals of translational research and its ultimate
impact on human health and wellness.

However, when one is considering the frameworks, models,
and other findings presented in this article, in support of the
preceding position statement, a number of critical limitations
should be considered: 1) this report does not constitute a
self-contained and comprehensive literature review and relies
on the domain coverage and knowledge content of a set of
contributing reviews as we have previously cited; 2) the con-
ceptual framework and practical model set forth in the preced-
ing sections are informed by the experiences and contributing
domain-specific literature reviews of the authors, thus intro-
ducing the potential for bias or incomplete support for our
positions; and 3) a systematic evaluation of the efficacy and
validity of our framework and model has not yet been per-
formed. However, even with such limitations, we believe that
a preponderance of peer-reviewed and anecdotal evidence
supports the generalizable nature of our findings and assertions
and that further systematic evaluation of our framework and
model, while beyond the scope of this specific report, will only

serve to further refine and enhance the basic concepts and
methodological approaches presented in this study. Further-
more, we believe that a community dialogue concerning such
issues is critical to the advancement of our collective under-
standing of such critical issues. The authors suggest that
readers interested in conducting such a dialogue consult the
online forums provides by many scientific organizations, such
as the American Association for the Advancement of Science
(http://www.aaas.org), American Medical Informatics Associ-
ation (http://www.amia.org), or researchinformatics.org (http://
www.researchinformatics.org).

CONCLUSIONS

We have presented a broad overview of the critical infor-
mation challenges that exist in the clinical and translational
research domain and a framework for translational informatics
that can serve to provide greater context and a conceptual
understanding of the role and practice of translational infor-
matics relative to those challenges. We have also provided a
practical model for the planning and execution of translational
informatics projects, building upon the preceding conceptual
model. Placing this framework and model in the context of our
review of the current state of translational informatics knowl-
edge and practice that can be synthesized from the published
literature, we believe a number of additional measures are
needed at the local, regional, and national levels to fully realize
the benefits of employing such a systematic and multidisci-
plinary approach to translational informatics, specifically:

1) The establishment of incentives, extramural funding mod-
els, organizational forums, and career development pathways
that can catalyze the creation of multidisciplinary translational
research teams including informaticians, basic scientists, and
clinical researchers;

2) The creation of knowledge and information exchange
media for all members of the clinical and translational research
community, with particular emphasis on increasing under-
standing of informatics capabilities and best practices in a
manner consistent with a broad variety of expertise levels;

3) The provision of institutional fiscal support mechanisms
for shared translational research infrastructure and platforms
that are too costly or difficult to deploy at the individual
investigator or laboratory level; and

4) The execution of studies and the generation of reports
relative to translational studies that generate novel evidence or
knowledge and that were made possible through the use of
advance informatics tools and techniques.

In reporting upon the preceding framework, models, and
recommendations, we intend to provide both translational re-
searchers and biomedical informaticians with a mechanism of
analyzing and addressing these challenges in a collaborative
and constructive manner that can ultimately advance and sup-
port the conduct of high-throughput, translational research
paradigms.
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