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ABSTRACT

MicroRNAs are small non-coding RNAs implicated mainly in

post-transcriptional gene silencing by interacting with the

untranslated region of the transcript. miR-210 represents major

hypoxia-inducible miRs, also known as hypoxamirs, which is

ubiquitously expressed in a wide range of cells, serving versatile

functions. This review article summarizes the current progress on

biogenesis of miR-210 and its physiological roles including arrest

of cell proliferation, repression of mitochondrial respiration, arrest

of DNA repair, vascular biology, and angiogenesis. Given the fact

that miR-210 is aberrantly expressed in a number of diseases such

as tumor progression, myocardial infarction and cutaneous

ischemic wounds, miR-210 could serve as an excellent candidate

for prognostic purposes and therapeutic intervention. With the

advancement of computational prediction, high-throughput target

validation methodology, sequencing, proteomic analysis, and

microarray, it is anticipated that more down-stream targets of

miR-210 and its associated biological consequences under hypoxia

will be unveiled establishing miR-210 as a major hub in the

biology of hypoxia-response.
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INTRODUCTION

MicroRNAs are small RNAs consisting of around 22 nucle-

otides. Unlike protein-coding genes, miRs exhibit extraor-

dinary gene regulatory functions, silencing gene expression

via interaction with the 3¢ UTR of the transcript

[3,8,12,44,74,81,82,85,87,88,90,91]. The biogenesis of miRs

is a highly-orchestrated process, which essentially requires

the co-ordination of ribonucleases, RNA-binding proteins

and the miR gene itself [93]. Transcription and appropriate

truncation of the nucleic acid, which is known as miR mat-

uration, are vital for the synthesis of correct miR strand.

Certain key proteins such as Drosha, DGCR8, exportin-5,

Dicer and Ago2 are critical for this process. Any disruption

or inactivation of these molecules results in pathological

outcomes or developmental defects [56,101]. The details of

miR maturation have been reviewed elsewhere and will not

be discussed in this article [91,93].

Over decades, induction of protein coding genes by

low-oxygen has dominated the focal point of hypoxia

research. One of the most sensitive physiological sensors

of hypoxia is HIF. HIFs control the cellular response to

hypoxia by regulating genes that are involved in metabo-

lism, angiogenesis, erythropoiesis, cell proliferation, differ-

entiation, and apoptosis. Although three isoforms of HIF

have been identified, HIF1a and HIF2a are the most

dominant sensors of hypoxia [48]. When oxygen tension

falls below the normoxic setpoint for any given tissue

[50], HIF1a is stabilized and binds to its more constitu-

tive partner HIF1b, and this complex regulates the

expression of downstream genes [48]. HIF transactivates

a wide variety of genes involved in the hypoxia response,

some of the most noted ones being erythropoietin,

VEGF, and glucose transporter 1 [72]. More recently,

however, the study of gene regulation promoted by a

low-oxygen microenvironment has received increased

attention. The regulation is under the control of specific

hypoxia-inducible miRs also termed as ‘‘hypoxamiRs.’’

Some of the reported hypoxamirs are summarized in

Table 1.
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MIR-210: GENETIC LOCUS AND PROMOTER

miR-210 is a master hypoxamir, which is induced under

hypoxia in wide range of primary and transformed cells

[20]. The stem–loop of miR-210 is located in an intron of

a non-coding RNA, which is transcribed from AK123483

on chromosome 11p15.5 [41]. miR-210 is regulated by

both HIF1a [9,40,41] and HIF2a [104]. HIF1a directly

binds to a HRE on the proximal miR-210 promoter,

located 400 bp upstream of the structure [41]. The HRE of

miR-210 promoter is highly conserved across species, sug-

gesting that HIF is phylogenetically conserved in regulation

of miR-210 de novo synthesis under hypoxia. Apart from

HIF, NFjB, a hypoxia-sensitive transcription factor [18], is

also responsible for miR-210 induction in responsive to

hypoxia. Mapping of 200-bp core promoter region imme-

diately upstream of miR-210 stem–loop structure indicated

a conserved jB binding site [103]. Chromatin immunopre-

cipitation, promoter luciferase assay, gene knockdown stud-

ies revealed that NFjB p50 can physically interact with and

transactivate miR-210 promoter under hypoxia [103].

Recent study also reported that Akt activation facilitates

the hypoxia-associated accumulation of miR-210 in a HIF-

independent manner [69], indicating that multiple circuits

of signaling can switch on miR-210 in responsive to low-

oxygen condition.

MIR-210 AND CELL GROWTH ARREST

miR-210 inhibits cell proliferation by targeting proteins

that are crucial for cell cycle progression. A number of

studies reported that hypoxia-driven miR-210 directly tar-

gets E2F3 in a wide variety of cells such as keratinocytes

[8], ovarian cancer cells [31], and human embryonic kid-

ney (HEK) cells [70]. E2F3 belongs to the E2F family tran-

scription factor involved in regulation of cell proliferation,

differentiation, and apoptotic response [35,58]. It is well

documented that E2F3 promotes cell proliferation by

allowing the cell cycle progression from G1 to S phase and

the initiation of DNA replication [22,57,96]. Recently,

miR-210 has been shown to target two other proteins,

namely FGFRL1 [40,95] and HOXA1 [40] to modulate cell

proliferation. FGFRL1 is the fifth FGFR family [100], which

contains similar structure of extracellular-transmembrane

domain to other FGFR family members, but lacks the

intracellular protein tyrosine domain [92]. FGFRL1 pro-

motes proliferation in esophageal squamous cell carcinoma

cells by facilitating cell cycle progression [95]. More impor-

tantly, over-expression of FGFRL1 significantly rescued the

growth inhibitory effect of miR-210 in vitro [95] and

in vivo tumor xenograft [40], suggesting that miR-210

inhibits cell proliferation via a FGFRL1-dependent mecha-

nism. HOXA1 is one of the members of the homeobox

protein cluster A, which is essential in patterning the early

hindbrain along the anterior–posterior axis during develop-

ment [29]. It is highly expressed in a wide variety of cells

including mammary epithelial cells, esophageal squamous

cells, and cervical cancer cells. E-cadherin signaling induces

HOXA1 expression, which subsequently promotes anchor-

age-dependent growth [102]. Forced over-expression of

HOXA1 induced activation of p44 ⁄ 42 MAP kinase, sup-

porting cell proliferation [66]. Over-expression of HOXA1

reversed growth inhibitory effect of miR-210 [40], indicat-

ing that miR-210-dependent growth inhibitory effect is, at

least partially, due to direct silencing of HOXA1.

Expression profile of miR-210 targets is different in

healthy versus cancer cells. Expression of some targets is

restricted to transformed cells. Besides, some of the miR-

210 target proteins serve different functions in different cell

type. In cancer cells, miR-210 may support cell prolifera-

tion. miR-210 targets MNT, a Myc-antagonist, promoting

cell cycle progression in transformed cells such as colon

cancer cells and cervical cancer cells [104]. MNT competes

with Myc for its binding partner myc-associated factor X

and the Enhancer Box sequences to inhibit transactivation

of genes that control cell cycle progression [42].

MIR-210 SUPPORTS STEM-CELL SURVIVAL

miR-210 supports stem-cell survival under hypoxic condi-

tion [51]. Episodes of IP enhanced MSCs survival under

anoxic condition, with the concomitant elevation of miR-

210. Interestingly, the cytoprotective effect of IP could be

reversed by anti-miR-210. Studies dissecting mechanistic

insight revealed that miR-210 promotes stem-cell survival

Table 1. Summary of hypoxamirs

Name of microRNAs Reference

Hypoxia up-regulated miRs miR-21, -23a, -23b, -24, -26a, -26b, -27a, -30b, -93, -103, -103, -106a, -107, -125b,

-181a, -181b, -181c, -192, -195, -210, -213, -429, -498, -572, -563, -637 and -628

[25,41,45,83]

Hypoxia down-regulated miRs miR- 15b, -16, -19a, -20a, -20b, -29b, -30b, -30e-5p, -101, -122a, -141, -186, -195,

-197, -200b, -224, -320, -374, -422b, -424, and -565

[12,41,78]
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via targeting CASP8AP2 [51], or its human homologue

FLASH, a protein that facilitates Fas-induced apoptosis

[43].

MIR-210 REPRESSES MITOCHONDRIAL
METABOLISM

When oxygen is available on a limited basis, metabolic

shift from mitochondria respiration to glycolysis takes

place, generating 2 mole of ATP (instead of 38 moles in

normoxia) per 1 mole of glucose [41]. Accumulating evi-

dence reveal that miR-210 inhibits mitochondrial metabo-

lism by targeting a number of proteins that are crucial

for normal TCA cycle. miR-210 delivery alone under nor-

mal oxygen condition was potent enough to inhibit mito-

chondrial energy production [11], impair the oxygen

consumption [11], induce lactate accumulation [15,27],

alter mitochondrial membrane potential [77], and disrupt

mitochondrial structure [77]. The ISCU 1 ⁄ 2 is one of the

direct targets of miR-210. ISCU1 ⁄ 2 expression is nega-

tively correlated with miR-210 level in wide variety of

cells, such as human pulmonary endothelial cells [11],

breast cancer cells [27], colon cancer cells [27], and

trophoblasts [55]. ISCU1 ⁄ 2 catalyzes the assembly of

[4Fe-4S] and [2Fe-2S] iron-sulfur clusters. Fe-S clusters

serve as prosthetic groups of the flavoproteins in electron

transport chain, enabling the oxidation–reduction reac-

tions in mitochondrial respiration and energy production

[80]. Fe-S cluster is critical for the enzymatic activity of

aconitase, a stereo-specific isomerization of citrate to iso-

citrate, which fuels the TCA-cycle [4,80]. Constitutive

expression of miR-210-resistant form of ISCU1 ⁄ 2 (devoid

of 3¢ UTR region) partially reversed miR-210-dependent

inhibition of mitochondrial respiration activity [15], indi-

cating that miR-210 targets ISCU1 ⁄ 2 to suppress mito-

chondrial functions during hypoxia. MiR-210 not only

targets ISCU1 ⁄ 2 but also regulates COX10 [15] and

SDHD [77], repressing mitochondrial respiration. COX10

encodes the enzyme protoheme: heme O farnesyl transfer-

ase that facilitates the biosynthesis of heme-a, a vital com-

ponent for the terminal enzyme of the respiratory chain

cytochrome c oxidase [75]. Loss of COX10 inhibits the

activity of mitochondrial complex I and complex IV [21].

SDHD is one of the subunits of the inner mitochondrial

enzyme succinate dehydrogenase or succinate-coenzyme Q

reductase (SQR), which catalyzes the oxidation of succi-

nate (coupled to reduction of ubiquinone) during

mitochondrial respiration [76]. In this regard, hypoxia-

dependent elevation of miR-210 serves as a potent inhibi-

tor of mitochondrial metabolism by targeting TCA cycle

and electron transport chain activity. miR-210-dependent

acute transient down-regulation of mitochondrial respira-

tion is, on the one hand, important to enable the cells to

‘‘hang in there,’’ as the cells are less sensitive to oxygen

for energy production under hypoxic environment. On

the other hand, it is in conflict with energy demanding

processes such as tissue repair. If the inhibition of mito-

chondrial respiration is prolonged, cell death may ensue

because of energy starvation. Interestingly, hypoxia-induc-

ible miR-210 remains elevated even after return to norm-

oxic environment for a day [25], suggesting that miR-210

induces a long-lasting inhibitory effect on mitochondrial

metabolism even in the presence of sufficient oxygen.

Strategies to antagonize the persistent miR-210 up-regula-

tion during re-oxygenation phase would help re-establish

normal mitochondrial respiration and direct the cells

toward an effective energy metabolism status.

MIR-210 STALLS DNA REPAIR

DNA damage is induced under normal metabolic condi-

tions and some environmental factors including UV and

radiation. It is expected that over a million DNA lesions

per cell take place in a day [68], leading to severe detri-

mental consequences including cell senescence and tumor

transformation. DNA repair is particularly important to

ensure that the genetic material remains intact throughout

the life. Recently, it was reported that miR-210 can silence

the DNA repair system via targeting the enzyme RAD52

[17]. RAD52 is a protein that fixes DNA double-strand

break repair, repairs single-stranded DNA gaps and facili-

tates RAD51-mediated strand invasion during homologous

recombination [67,99]. miR-210 directly binds to the 3¢
UTR of RAD52 to induce translational repression [17].

Hypoxia-dependent down-regulation of RAD52 can be res-

cued by treatment with anti-miR-210 [17], suggesting that

RAD52 is down-regulated via a miR-210-dependent mecha-

nism under low-oxygen environment. Shutdown of the

DNA repair under low-oxygen condition might be critical

for ATP conservation for cell preservation (‘‘hang in there’’

response) during acute hypoxic condition [17]. However,

such shutdown is in direct conflict with tissue repair.

Chronic hypoxia (thus subsequently leading to sustained

miR-210 level) substantially arrests DNA repair mechanism

and induces genetic instability, resulting in either cell senes-

cence or conferring a mutation phenotype during tumor

transformation.

MIR-210 INDUCES ANGIOGENESIS

Cells respond to hypoxic challenge by up-regulation of

genes that are essential for endothelial cells laying new

blood vessel, which would help correct hypoxia and ensure

survival. While the majority of studies focus on the regula-

tion of VEGF, which is a potent pro-angiogenic factor to

support sprouting of endothelial cells, current progress in

miR-210: The Master Hypoxamir
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miR biology has shed some light on the involvement of

miR-210 in regulating angiogenesis under low-oxygen envi-

ronment. Fasanaro et al. first reported that hypoxia-driven

miR-210 supports angiogenic response in endothelial cells

[25]. These effects were, at least partially due to the down-

regulation of EFNA3, an ephrin family member involving

vascular development [25,39]. Over-expression of EFNA3

significantly blocked the pro-angiogenic effect of miR-210

or hypoxia pre-conditioning [25]. Apart from EFNA3,

miR-210 directly targets protein-tyrosine PTP1B [26,39],

which negatively regulates VEGF signaling by de-phosphor-

ylation of VEGFR2 in endothelial cells [71]. Elevation of

miR-210 leads to repression of PTP1B, allowing successful

VEGF signaling to proceed under hypoxia. The pro-angio-

genic effect of miR-210 was evaluated in myocardial infarc-

tion, as evidenced by improved endothelial cell survival

after delivery of miR-210 in the heart [39]. The involve-

ment of miR-210 in regulation of pathophysiological angio-

genesis has also been demonstrated in ischemic renal

ischemia ⁄ reperfusion (I ⁄ R) injury, indicating that miR-210

induction is necessary to drive the expression of VEGF and

VEGFR2 in endothelial cells [61]. In this regard, elevation

of miR-210 supports angiogenic response and facilitates

microcirculation under both physiological and pathophysi-

ological conditions.

MIR-210 SUPPORTS CELL DIFFERENTIATION

Oxygen tension represents an important microenviron-

mental cue that directs the cell differentiation program

toward lineage commitment [36,60,79]. In general, stem

cells tend to retain their pluripotency and undifferentiated

state under hypoxia, while certain progenitor cells exhibit

either accelerated or arrested differentiation program

depending on the cell type. A number of investigations

revealed that miR-210 supports cell differentiation. Bianchi

et al. reported that mithramycin, a DNA-binding drug,

which promotes erythroid differentiation, induced the

expression of miR-210 in erythroid progenitor cells [7],

with the concomitant expression of erythroid marker

c-globin. On the other hand, miR-210 promotes bone

morphogenic protein (BMP)-induced osteoblastic differen-

tiation via targeting ACVR1B [65]. ACVR1B transmits sig-

nal from activin via Smad 2 ⁄ 3. Inhibition of Smad 2 ⁄ 3
leads to activation of Smad 1 ⁄ 5 ⁄ 8, resulting in promotion

of differentiation of osteoblast to osteoclast [65]. In this

regard, hypoxia-inducible miR-210 down-regulates ACVR1B,

shutting down Smad 2 ⁄ 3 signaling, and promoting Smad

1 ⁄ 5 ⁄ 8-dependent osteoblastic differentiation [65]. In addi-

tion, miR-210 is strongly induced during adipogenesis

[78]. Delivery of miR-210 markedly promoted lipogenesis,

while anti-miR-210 treatment significantly impaired the

expression of lithium-induced adipogenic markers [78].

The pro-adipogenic response may be attributed by direct

targeting of Wnt signaling mediator Tcf7l2. Given the fact

that hypoxia promotes adipogenic differentiation [45], it

is anticipated that a low-oxygen environment fosters the

accumulation of miR-210, which in turn down-regulates

Tcf7l2 and subsequently induces adipogenesis. Figure 1

summarizes the major biological significance of miR-210

elevation and its corresponding targets under hypoxic

condition.

Figure 1. Summary of miR-210 targets and their biological consequences under hypoxia.
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MIR-210 AS A PROGNOSTIC BIOMARKER

The average half-life of miRs is around five days, 10 times

more than that of regular mRNA [28]. These small RNAs

are extremely stable and are resistant to degradation by

RNase A [14], high temperature, extreme pH, and freeze-

and-thaw cycle [59]. The extraordinary stability of miR

makes it suitable to serve as a biomarker of certain diseases

for prognostic purpose. The expression of miR-210 is ele-

vated in human solid tumors, including glioma [64], head

and neck carcinoma [40], lung adenocarcinoma [16], late

stage small cell lung cancer [77], malignant melanoma

[83], and pancreatic ductal adenocarcinomas [32]. Aberrant

miR-210 expression is not only present in the solid tumor

or injured organs but also being secreted into circulation,

which can be detected in the plasma of patients. Elevated

circulating level of miR-210 can serve as a marker of dif-

fuse large B-cell lymphoma [54], pancreatic ductal carci-

noma [37,97], malignant solitary pulmonary nodules [89],

and acute renal injury [62]. Recently, Lorenzen et al.,

reported that miR-210 can also be detected in the urine

from normal individual and renal allograft recipients [63],

suggesting a wide variety of miR-210 source for prognosis.

To date, a number of studies have worked on the prognos-

tic power of miR-210 expression in different diseases. High

levels of miR-210 were associated with disease recurrence

and short overall survival in head and neck squamous cell

carcinoma [30]. High miR-210 expression was also associ-

ated with a lower relative risk (RR) of tumor-related death

compared with the intermediate expression of miR-210

expression in soft-tissue sarcoma patients [33].

MIR-210 DELIVERY OR ANTI-MIR-210:
POTENTIAL THERAPY OF ISCHEMIC
DISORDERS?

Given the fact that miR-210 exerts versatile effects on cellu-

lar functions and its deregulation under pathological condi-

tions, strategies targeting correction of aberrantly expressed

miR-210 might open up a new therapeutic avenue to a

wide range of diseases such as ischemic disorders and

tumor progression. The employment of miR-210 mimic

delivery or anti-miR-210 therapy depends on whether miR-

210 is insufficient or over-produced, respectively, under the

corresponding disease state. Recently, it has been reported

that intramyocardial injection of non-viral vector minicircle

DNA carrying miR-210 precursor can stably transduce

miR-210 expression for at least eight weeks in the heart

[39]. More importantly, this strategy improved cardiac

function, reduced the infarct size and rectified angiogenesis

after myocardial infarction [39], indicating that miR-210

delivery might serve as a therapeutic approach in ischemic

heart disease. On the other hand, aberrantly up-regulated

miR-210 level can be suppressed by delivery of anti-miR-

210 strategy using antagomir (with 2¢O-methylation and

phosphothioates) or LNA (with extra bridge connecting 2¢
oxygen and 4¢ carbon on ribose moiety). Stoffel and col-

leagues first reported that murine endogenous miRs could

be silenced by bolus intravenous injection of antagomir in

wide range of tissues [53]. The anti-miR in vivo study was

further extended to non-human primates. Acute adminis-

tration of unconjugated LNA-modified oligonucleotide

against miR-122, a miR that regulates cholesterol biosyn-

thesis, effectively down-regulated hepatic miR-122 in Afri-

can green monkeys, which was accompanied by a decrease

in plasma cholesterol in a dose-dependent manner [24].

Our group reported that ischemic cutaneous wounds

exhibit elevated miR-210 expression, which was associated

with the down-regulation of E2F3 and impairment in

keratinocyte proliferation and wound re-epithelialization

[8]. Besides arrest of keratinocyte proliferation, elevated

miR-210 may complicate wound closure by repressing

mitochondrial respiration and silencing DNA repair.

Wound healing is an energy-demanding process [86].

Energy supply, as ATP, is required to fuel the growth of

new tissue. Indeed, extracellular ATP supports wound-heal-

ing response by a number of mechanisms including epider-

mal growth factor (EGF) receptor transactivation, and

NADPH oxidase activation [86]. Limited ATP generation is

therefore in direct conflict with wound healing. Disruption

of DNA repair system by elevated miR-210 in ischemic

wounds is yet another roadblock as excessive DNA damage

leads to cell senescence, which blunts the healing response.

Angiogenesis is important in most cases but not singularly

sufficient to drive wound healing [46]. Clinical experience

shows that successful re-vascularization failed to heal ische-

mic lower extremity wounds [1,2,5,6,10,13,19,23,47,

49,73,84,94]. Thus, elevation of miR-210 in ischemic

wounds hurts wound closure by inhibiting keratinocyte

Figure 2. miR-210 serves as prognostic and therapeutic targets.
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proliferation, disrupting mitochondrial metabolism, and

compromising DNA repair despite pro-angiogenic effects.

Delivery of anti-miR-210 should be tested for its efficacy to

improve cutaneous wound outcomes.

PERSPECTIVE AND CONCLUDING REMARKS

miR-210 is steadily establishing itself as a major hypoxia-

response factor that regulates several key aspects of health

and disease. In silico prediction algorithms including Tar-

getscan [38], MiRanda [38], Pictar [52], miRBase Target

Database [34], and miRDB [98] represent powerful tools in

the search for novel direct targets of miR-210. One of the

limitations of these approaches is the possibility of raising

false positive prediction because of the short seed sequence

(7–8 nt). Experimental validation of specific miR-binding

to 3¢ UTR is necessary to confirm the induction of transla-

tional repression. Recently, the employment of RISC

immunoprecipitation, a robust high-throughput approach

to biologically validate the enrichment of transcript in

RISC complex in responsive to miR-210 over-expression,

has unveiled a number of novel miR-210 targets that are of

significance in ischemic diseases [26,39,40]. Strategies

adopting combined approaches including in silico predic-

tion, RISC immunoprecipitation, proteomic analysis,

microarray analysis, would help dissect the biological con-

sequences of miR-210 and its associated target under dis-

eases state. As it relates to regulating biological functions,

miR-210 serves as a potent maestro in fine-tuning hypoxia

response. Apart from prognostic value, miR-210 may serve

as a target for therapeutic purpose in treating ischemic dis-

orders such as myocardial infarction and cutaneous ische-

mic wounds (Figure 2).
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