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Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-
transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally
lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets
of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and
regeneration are diverse and provided by processes including cellular dedifferentiation, trans-
differentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore,
induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor
manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based
therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels
include mimics and inhibitors that may be specifically targeted to cells of interest at the injury
site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration
based on emergent reports and rapid advances in miRNA-based therapeutics. (Am J Pathol 2015, 185:
2629—2640; http://dx.doi.org/10.1016/j.ajpath.2015.04.001)

Injury-responsive coding genes are recognized as a main
driver of wound healing and tissue regeneration.' After
injury, tissue healing is initiated either by regeneration or
repair or by a combination of both. Although robust tissue
regeneration is observed in certain lower vertebrates,
including urodele amphibians and teleost fish, mammalian
tissue regeneration is limited, particularly in adults.” A
cornerstone in the process of regeneration is the expression
of injury-inducible coding genes at the site of tissue injury.
However, simultaneous expression of an array of injury
responsive coding genes, after injury, complicates signaling
networks. Post-transcriptional gene silencing (PTGS) may
be viewed as a filter that is aimed at selectively advancing
limited sets of injury-responsive coding genes toward pro-
tein expression to streamline the repair and regeneration
process.

Earlier, approximately 97% of human DNA was consid-
ered as junk because it did not encode for protein.” How-
ever, the current literature recognizes a critical role of
noncoding DNA in biology. What used to be known as
junk DNA is now known to produce approximately 22-
nucleotide long evolutionarily conserved and functionally
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critical single-stranded miRNA molecules that specifically
silence mRNA function predominantly by accessing the 3'-
untranslated regions of mRNA." Chromatin silencing,
repression of translation, and mRNA degradation are
mechanisms by which miRNAs implement PTGS in a
sequence-specific inhibition manner.’” Thus, miRNA
biology determines the biological functionality of coding
genes.

According to the current edition of miRbase, a central
online repository for miRNAs, there are 1881 hairpin
precursors and 2588 mature miRNAs enlisted for humans.
This list is rapidly expanding. Because the function of
miRNA determines the functional fate of mRNA, under-
standing the implication of miRNA in the context of tissue
repair and regeneration becomes critically important.
Here, we discuss the developments recorded in the current
literature that underscore the rapidly unfolding importance
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of miRNA and related processes in tissue regeneration and
repair.

Development Is the Key to Regeneration

In mammals, the early in utero state has provided some of the
most impressive evidence of tissue regeneration.” Such
remarkable regenerative potential is markedly blunted or lost
in the postnatal period and more so during adulthood and old
age. Comparison of the global expression pattern of mature
miRNA of mouse fetal skin from different developmental
stages has provided critical insight into miRNA-based
regulation of adult tissue development.’” Healing of the skin
at embryonic day (E)16 is regenerative and scarless and was
associated with global miRNA repression compared with the
skin of E19. The healing at this stage featured adult pheno-
type, including scar formation.” Of note in this context is the
observation that miRNA biogenesis is substantially blunted
at E16, indicative of dampened PTGS in the fetal skin.”
Global suppression of miRNA function has been consis-
tently noted in mouse oocytes and early embryo.® The global
suppression of miRNA during mouse oocyte-to-embryo
transition is likely facilitated by the expression of highly
conserved RNA binding proteins Lin28a and Lin28b that are
abundant during embryogenesis.” Down-regulation of let-7
miRNA is initiated by the pluripotent factor Lin28 by onset
of let-7 precursor (pre-let-7) uridylation using a noncanonical
poly(A) polymerase, TUTase4 (TUT4)."” These reports lead
to the hypothesis that fetal tissue development is enabled by
transiently silencing miRNA-dependent PTGS. Such
silencing of the silencer unleashes numerous additional
coding genes important for tissue development.''

After spinal cord injury in Wistar rats, miRNA expression
is markedly subdued from day 3 after injury with gradual
rebound of down-regulated miRNA at 7 days after injury.’
Suppression of miRNA expression after spinal cord injury
was verified in an independent study in which down-
regulated miRNAs were reported up to 14 days after
injury.'” The pattern of miRNA suppression after injury holds
across organ systems. Partial hepatectomy is followed by
down-regulation of 70% of the miRNA within 24 hours of
injury. Of particular interest in this study was the observation
that miRNA down-regulation was preceded by a transient up-
regulation of miRNA 3 hours after injury, a response aimed
at directing liver regeneration. The subsequent genome-wide
suppression of miRNAs supported tissue regeneration by
restoration of liver cell mass. In patients undergoing auxiliary
liver transplantation, down-regulation of miRNA facilitated
cell proliferation that supported tissue regeneration.'* In
similar cohorts suffering from failed regeneration, expression
of specific miRNA regulating cell cycle inhibition and DNA
methylation were identified.'* Taken together, these obser-
vations support the hypothesis there is support for the notion
that injury-induced suppression of miRNAs may serve as an
intrinsic physiological strategy to transiently desilence
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coding genes necessary for the tissue repair and regeneration
processes.

In adult tissue, resident stem cells (SCs) are usually
postmitotic and quiescent and are substantially different
from embryonic SCs (ESCs), which are actively prolifer-
ating and differentiating.'”> However, external stimuli in the
form of injury may suppress tissue-specific miRNAs, which
in turn may lead to alterations in adult resident SCs such that
they start to differentiate, akin to their embryonic counter-
part, with the objective to enact tissue repair. This is one
example of how regeneration is largely inspired by mech-
anistic underpinning of embryo development. Some of the
widespread principles and processes that drive tissue
regeneration include cellular differentiation, dedifferentia-
tion, transdifferentiation, and reprogramming.'®

Dedifferentiation, Transdifferentiation, and
Cellular Reprogramming

Unlike lower vertebrates, mammalian tissue regeneration or
repair processes rely on pre-existing stem and other cells with
plasticity to replace the injured tissue.'” The sources of such
cell populations are limited. In response to a strong micro-
environmental cue triggered by the injury, behavior of some
of the cells in close proximity of the injury site changes to
accommodate the emergence of new cell types. Plasticity of
surviving cells at or close to the injury site provides additional
pools of cell populations that may contribute to the repair or
regeneration process. Using a fluorescent-labeled tracking
method, the reversion of terminally differentiated cells to a
more plastic state has been observed.'® The process wherein
terminally differentiated cells regress from a specialized
function to a simpler less differentiated state, a more SC-like
state, is referred to as dedifferentiation.'® Mammalian dedif-
ferentiation is evident in myoblasts, renal cells, oligoden-
drocyte precursor cells, and even in germ cells.'” The process
of dedifferentiation commonly involves re-entry of regener-
ating cells into the cell cycle process.”’ Dedifferentiation al-
lows the cell to proliferate again before re-differentiating. In
this way, a variety of cell types may be replaced at the
injury site. The process of cell reversion to a more
pluripotent state is demonstrated experimentally by
transferring somatic cell nuclei to eggs and fusing somatic
cells with pluripotent cells.”’ Nuclei of fertilized egg or the
pluripotent SCs (PSCs) contain some putative reprogram-
ming factors that are capable of erasing the memory of the
differentiated somatic cell. More recently we learned that a
combination of only four transcription factors (ie, Oct3/4,
Sox2, Klf4, and c-Myc) is sufficient to revert differentiated
somatic cells into an embryonic fate somewhat akin to that of
ESCs.”” The critical importance of transcription factor net-
works in determining stemness and cell fate was thus recog-
nized. The emergent field of nuclear reprograming has
provided critical insight into a number of fundamental cell
biology processes, including transdifferentiation or direct
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reprogramming. Although the two terms are often used
interchangeably, there are important distinctions between the
two. Transdifferentiation is a spontaneous change of cell fate
that typically happens in vivo under conditions of stress or
pathological insult. In contrast, direct reprogramming is
induced by defined factors such as chemical compounds,
transcription factors, or other artificial engineering methods.”
In other words, direct reprogramming could be defined as
transdifferentiation that can only happen under stringent arti-
ficial control conditions.”*

Transdifferentiation advances the notion of dedifferentia-
tion to one step further whereby all of the cells regress to a
point from where they may differentiate to multiple special-
ized cell types. Transdifferentiation may also bypass the
pluripotent state. With the use of defined transcription factors
such as Ascll/Brn2/Mytll, Gata4/Mef2c/Tbx5, and Hnf4a/
Foxa, fibroblasts may be reprogrammed to neurons, car-
diomyocytes, and hepatocytes, respectively.”” Such inducible
transdifferentiation process bypasses the pluripotent state and
is therefore often referred to as direct reprogramming.”® Under
normal physiologic conditions, the transdifferentiation pro-
cess seems to be rare in mammals, although a closer look is
warranted. However, during early stages of post-natal devel-
opment, mouse esophagus smooth muscle may give rise to
skeletal muscle tissue.”’ In adults, dedifferentiation and
transdifferentiation may occur naturally during the early phase
of tissue repair. These subtle changes in cellular plasticity are
driven by an orchestrated regulation of gene expression net-
works to reconstruct tissues in a sophisticated manner that
avoids undesirable consequences such as neoplasia. Although
the reappearance of developmental phenotype is reported
during tissue regeneration,”® the molecular underpinnings
remain largely elusive. What fills part of this void is the
emergent observations that span the diverse phylogenetic tree
of the animal kingdom, demonstrating that miRNAs play akey
role in tissue repair and regeneration.”” Given their capacity to
determine the functional fate of coding genes and therefore a
large network of downstream signaling pathways,”’ miRNAs
arerapidly emerging as potential candidates for the therapeutic
modulation of tissue repair and regeneration. In this context, it
is of extraordinary importance that the turnover of miRNA
within the cell determines its functional fate.

miRNA Turnover Determines Cell Fate

Tissue regeneration is markedly compromised with aging,
and the underlying reasons remain largely elusive.’’ Lin28a
improve tissue repair by suppressing let-7 biogenesis and
enhancing oxidative metabolism.”’ Several mature miRNAs
exhibit tissue-specific expression pattern, although their
primary transcripts show no substantial changes in expres-
sion pattern.”” Although several aspects of global miRNA
biogenesis pathways are well understood,” the specific
mechanisms regulating the expression of individual miRNAs
that exhibit distinctive expression patterns in certain tissues
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remain unclear.”” Interestingly, fine tuning of each step of
the general miRNA biogenesis pathway allows tight control
of expression of specific individual miRNAs. A battery of
proteins take part in executing miRNA biogenesis either
by interacting with the Drosha-DGCRS8 microprocessor
complex, or Dicer or the miRNA precursors.”® At the
microprocessor level, the p68 and p72 helicases regulate the
biogenesis of approximately one-third murine pri-miRNA.*
Similarly, individual miRNA processing, such as pri—miR-
21 or pri—miR-7, is greatly influenced by other protein—
protein interactions such as the SMAD—p68 complex or
SMAD—SMAD nuclear interacting protein 1 and splicing
factor SF2/ASF.” Similarly, heterogeneous nuclear ribonu-
cleoprotein Al facilitates Drosha-mediated processing by
binding to the loop regions.’® The KH-type splicing regu-
latory protein enhances Drosha and Dicer processing by
binding to the guanine triplet motifs in their terminal loops of
the pri- and pre-miRNA.*® Although the effect of the Lin28
repressor is limited to let-7 family members, the nuclear
factor NFOO—NF45 heterodimer impairs DiGeorge syn-
drome critical region 8 (DGCRS) function.”® This effect is
executed in a sequence-independent manner through inter-
action with the pri-miRNA stem loop structure.’® Finally,
pri- or pre-miRNA editing by adenosine deaminases 1 and 2
may affect mature miRNA accumulation and influence
miRNA-target specificity.’

miRNA Biogenesis

For a detailed review of miRNA biogenesis, please refer
to the recent literature.”**” Broadly, miRNA biogenesis
involves two essential steps that produce a mature func-
tional miRNA. Apart from the known canonical and
noncanonical pathways, miRNA biogenesis from the loop
sequence, tRNA-derived RNA fragments and the miRNA
arm selection have now become evident. Several kilobase
long pri-miRNAs along with the stem loop structure are
trimmed to a 60- to 100-nt hairpin-structured precursor
(the pre-miRNA) by RNase III Drosha and DGCRS that
as a multi-protein microprocessor unit guides the speci-
ficity of Drosha’s cleavage activity resulting in a double
stranded pre-miRNA with a 2-nt 3’ overhang (Figure 1).
The expression and activity of Drosha and DGCRS8 are
subject to stringent regulation by multiple factors that in
turn influence intracellular turnover of miRNAs. For
example, DGCRS8 stabilizes Drosha, whereas Drosha
cleaves the hairpins in DGCR8 mRNA thereby inducing
degradation.

The cytoplasmic export of newly generated pre-miRNA
occurs via a Ran-GTP-dependent process. The 3’ overhang
is specifically recognized by exportin 5 (XPOS), and this
permits the selective cytoplasmic export of correctly pro-
cessed pre-miRNA. Disruption of enzymes such as Drosha
or DGCRS, which are essential for the miRNA maturation,
results in rapid proliferation of cancer cells.”® In the cyto-
plasm, additional cleavage of pre-miRNAs near the terminal
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loop is initiated by Dicer, a second RNaselll enzyme. In
mouse fetal skin, Dicer is substantially down-regulated,
indicating suppressed global miRNA biogenesis that is
likely to prevent silencing of numerous coding genes aimed
at tissue regeneration often evident at E16.” Dicer acts as a
molecular ruler that cleaves the pre-miRNA at a specific
distance from the ends produced by Drosha cleavage and
generating an approximate 22-nt double-stranded miRNA
duplex (miR/miR*) with a 2-nt 3’ overhang. Dicer forms the
RNA induced silencing complex (RISC) in combination
with TAR RNA binding protein (TRBP), protein kinase
RNA activator (PACT), and Argonaute (AGO) proteins.
Previously, RISC processing of miRNA duplexes was
thought to involve the incorporation of one strand (with the
lowest 5’ base-pairing stability), whereas the other was
degraded based on thermodynamic principles and energy-
independent endonuclease-mediated selection with Ago2.
Strands present in the miR-RISC complex are named based
on their position in the hairpin sequence as -5p or -3p. Ev-
idence shows that the target abundance stabilizes the
less-dominant strand of miRNA, implying that the target
transcript regulation may affect the selection of mature
miRNAs. We now know that 3p-miRNA is successfully
activated if the pre-miRNA is 5’-capped. In addition to arm
selection, the loop region of the pre-miRNA hairpin may
also be used for so-called loop-miRNA, suggesting that
double strands generated by typical miRNA processing are
not absolutely needed for the functioning of certain
miRNAs.

The synthesized miRNA targets complementary se-
quences in the 3’-UTR of its target mRNA. Functional
repression depends on the extent of complementarity. If the
binding is perfect, it leads to mRNA cleavage and degra-
dation. If the binding is imperfect, it may cause translational
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Figure 1  The miRNA biogenesis pathway. The
pri-miRNA transcript is cleaved by the micropro-
cessor complex Drosha-DGCRS8 in the nucleus. The
precursor hairpin pre-miRNA is exported from the
nucleus by Exportin-5—Ran-GTP. In the cytoplasm,
the RNaselII Dicer forms complex with the double-
stranded RNA-binding protein TRBP and AGO-2
forms the RISC. The functional strand of the
mature miRNA is loaded together with AGO-2 pro-
teins into the RISC. The mature miRNA silences
target mRNAs through mRNA cleavage, translational
repression, or deadenylation, whereas the passen-
ger strand (black) is degraded. AGO-2, argonaute-2;
DGCR8, DiGeorge syndrome critical region gene 8;
pre-miRNA, precursor miRNA; pri-miRNA, primary
miRNA; RISC, RNA-induced silencing complex;
TRBP, TAR RNA binding protein.

repression. miRNAs can directly affect protein translation
by targeting one or more of multiple stages such as initia-
tion, elongation, or termination. Indirect suppression of
protein synthesis by miRNA is aimed at altering stability
and initiating degradation of target mRNAs by dead-
enylation or sequestration of the target mRNAs at cyto-
plasmic foci called processing bodies (P bodies). mRNA
turnover is thus affected.’’

miRNA Degradation

Although miRNAs are globally stable with half-lives that
may extend up to days,’” initial studies indicate that mature
miRNAs are under the regulatory control of cis- and
transacting factors. The lifetime of any given miRNA is
profoundly affected by specific modifications and exo-
nucleases. However, further investigation into the regulation
of miRNA homeostasis is warranted in the following three
areas: 1) miRNA modifications, ii) relation between miRNA
function and stability, and iii) targeted degradation of spe-
cific miRNA."

On an as-needed basis, reversible muting of PTGS may
be enacted by several miRNases (Figure 2) or exoribonu-
cleases that may degrade cellular miRNA, thereby
regulating downstream functional impact. The question
is: How are miRNAs protected from exoribonucleases?
Within the miRNA-RISC complex (miRISC), the miRNA
is protected from ribonuclease activity because both 5" and
3’ ends of miRNAs are buried within the AGO protein.”’
AGO proteins not only enrich miRNA abundance but
also conceal the miRNA as evident from structural biology
studies.”” How the AGO protein unfolds to make the
miRNA accessible for exoribonuclease degradation re-
mains unknown.
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Name Drosha Dicer MCPIP1 Argonaute GLD-2 PUP-2 XRN2 PNPase©!d-35
Type RNase IlI RNase IlI Zinc-finger CCCH PIWI-RNase H Poly(A) Uridyltransferase 5'-to-3' 3"-to-5'
endonuclease endonuclease type containing 12A  endonuclease polymerase exonuclease exonuclease
pri-miRNA pre-miRNA pre-miRNA Processed miRNA pre-miRNA & miRNA miRNA
Substrate pro-mikNA miRNA [, )
. || - . 3 3 I~
Isite g 5 A ‘/\' 5
- 5 ¥
G - 3 §)
m P\AAA U
R It miRNA miRNA pre-miRNA miRNA miRNA miRNA miRNA miRNA
csy maturation maturation degradation maturation stabilization destabilization degradation degradation
Figure 2  Enzymes that act on the pre-miRNA and mature miRNA to determine miRNA turnover. The pri-miRNA transcript is processed by Drosha to generate

the pre-miRNA. The miRNA biogenesis depends on the balance of productive and abortive ribonucleases such as Dicer and MCPIP1, both of which act on the

same pre-miRNA. Argonaute and GLD-2 act on mature miRNA for maturation and stabilization. Similarly PUP-2, XRN-2, and PNPase

°ld=35 act on mature miRNA

for degradation. MCPIP1, monocyte chemotactic protein-induced protein 1; PNPase, polynucleotide phosphorylase; pre-miRNA, precursor miRNA; pri-miRNA,

primary miRNA.

miRNA Signature in SCs

Deep sequencing studies have revealed that miRNA expres-
sion in naive ESCs exhibit a different signature compared
with primed epiblast SCs with only one-third of the total
miRNA being differentially expressed.”” miR290-295,
miR17-92, and miR302/367 clusters are differentially
expressed along with a cluster of large repeats on chromo-
some 2.** Although the term induced pluripotent stem cells
(iPSCs) is often referred to as nearly identical to their embryo-
derived counterparts, miRNA expression profiling between
the human ESCs and human iPSCs demonstrate marked dif-
ferences in a subset of miRNAs.** miRNA expression in ES
and reprogrammed cells (iPSCs or nuclear transfer ES cells)
have been identified by genome mapping. Within these two
cell types, 34 miRNAs were differentially expressed. Of these
differentially expressed miRNA, miR-24 and miR-370 were
upregulated in ES.*” These reports demonstrate that SCs or
pluripotent cells have their own distinct signature irrespective
of their origin. This observation sheds light on the intriguing
potential that miRNAs may function as key drivers in
regeneration.*

Loss of Dicer is embryonically lethal due to the lack of
almost all PSCs.”” In vitro, ESCs with Dicer deletion do not
proliferate.”® DGCRS ablation also blunts proliferation of
ESCs which go on to accumulate in the G, phase of the cell
cycle.”” Current observations lead to the notion that miRNA
biogenesis is integral for tissue development and highlights
the importance of specific miRNA expression that is critical
for embryonic development. For example, members of the
miR-290 family are productive in rescuing proliferation of
DGCRS8-deficient ES cells but have no effect on the differ-
entiation defect.”” Such miRNAs are referred to as ESCC
miRNAs, or ES cell-specific cell cycle regulating miRNAs.
The notion that distinct stages in embryonic development are
regulated by specific subsets of miRNAs is further supported
by studies with let-7 miRNA demonstrating inhibition of
proliferation and self-renewal of ES cells.”'”” The emerging
idea therefore is that as development progresses, an
increasing number of miRNA get involved resulting in a
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higher level of complexity as it relates to regulating relevant
biological processes.” A logical extension of this observa-
tion would be the notion that miRNAs may be used an
effective resource to induce cellular reprogramming.

miRNAs in Cellular Reprogramming

The ectopic expression of Oct4, Sox2, Klif4 and c-Myc
(Yamanaka factorsfOSKM) may reprogram differentiated
cells to a pluripotent state.”” As the molecular mechanisms
underlying such cellular reprogramming unfold, the signifi-
cance of miRNA in cell reprogramming is being widely
recognized. miR-302 and miR-17 families are abundantly
expressed in the early stages of OSKM induced pluripotency.”
Disruption of global miRNA biogenesis by ablation of Drosha,
Dicer, or Ago2 substantially reduces OSKM-induced iPSC
colonies in mouse embryonic fibroblasts.” Introduction of
several members of miR-290 cluster may enhance the effi-
ciency of OSK-induced cell reprogramming, comparable with
that achieved by OSKM, demonstrating that miR-290s may
substitute c-Myc (Figure 3). In this context, it should be noted
that the promoter region of the miR-290-295 cluster may be
bound by c-MYC.” Similar studies with ectopic expression of
miR-93, miR-106b, and miR-302 cluster were successful in
enhancing cell reprogramming.

In the absence of OSK factors, delivery of miR-302a, miR-
302b, miR-302c, or miR-302d alone fails to induce the
expression of epithelial markers.”® Two independent groups
have now demonstrated that lentiviral expression of miR-302/
miR-367 cluster and a cocktail of miRNAs (miR-200c, miR-
302a-d, miR-369-3p, and miR-369-5p) may reprogram
human fibroblasts to iPSCs efficiently.”’ The cells that re-
expressed human ESC factors featuring global gene expres-
sion analogous to human ESCs were named miRNA-iPSCs.
This constitutes the first proof of principle to demonstrate
that iPSCs may be obtained with miRNAs without the need for
genomic integration of foreign DNA. Genomic integration
increases the chances of recipient chromosomal locus modi-
fication after integration, thereby raising the possibility of
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miR-300a-b-c-d, miR-200c, miR-369s
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‘ \ ® Oct4, Sox2, Kif4, c-Myc

Differentiation

miR-21 mlR 93, miR-106a-b, miR-: 3025
miR-34
Let-7 22

Ectopic expression

making the recipient genomic loci unstable.”® Although
adenovirus-derived vectors and Sendai virus were proclaimed
as safe nonintegrating methods for production of iPSCs, the
statement should be used with extreme caution. Harui et al>”
have reported that in established cell lines, adenoviral vec-
tors do integrate into the genome. Thus, caution should be
exercised as we seek to adopt these techniques for in vivo
applications.”” A comparison of nonintegrating nonviral
methods for human somatic cell reprogramming to iPSCs is
provided in Table 1. Compared with these methods, miRNA-
based strategies to generate iPSCs without involving genomic
integration is a much safer choice and therefore is of extraor-
dinary therapeutic value (Table 1).”"-*'~7°

Is miR-29 a Master Regulator of Tissue
Regeneration?

In the mammalian system, the extracellular matrix (ECM) is
critical for tissue regeneration. The ECM determines cell
behavior by manipulating cell shape, proliferation, migration,
differentiation, and death.”" Scarless regenerative healing is an
intrinsic property of the fetal skin.”* Major differences in the
ECM of the fetal and the adult skin account for the sharp
contrast in healing phenotype between the fetus and adult
skin.”? Fetal skin ECM predominantly expresses type III
collagen, elevated hyaluronic acid, and elevated matrix met-
alloproteinase to tissue-derived inhibitor (MMP:TIMP) ratio
that facilitates cell movements, turnover of ECM modulators,
and tissue remodeling.”>’* One of the hallmarks of fetal skin
development is the lower abundance of miRNAs caused by
mechanisms that are aimed at silencing PTGS during tissue

-
| -

Figure 3  Schematic illustration depicting basic
regulatory network of miRNA interactions aimed at
pluripotency. Ectopic expression of miR-93, miR-
106a-b, and miR-302s induces pluripotency in
differentiated cells. Apart from direct expression of
core pluripotency factors such as Oct4, Sox2, KLF4,
and c-Myc, miR-300a-b-c-d, miR-200c, miR-369s are
capable of inducing pluripotency. Overexpression of
miR-290 may replace c-Myc during induction of plu-
ripotency. Expression of Let-7 miRNA enacts exit of
cells from the cell cycle by repressing Lin28. Expres-
sion of miR-21 and miR-34 prevents conversion of
differentiated cells to their pluripotent state.

e
@

Pluripotency

development, enabling expression of otherwise silenced cod-
ing genes that drive skin development. Of such miRNAs that
are silenced during fetal development, low abundance of miR-
29 was reported in skin across several species.”’>’ In
humans, hsa-miR-29a and hsa-miR-29b-1 (chromosome 7)
and hsa-miR-29b-2 and hsa-miR-29c (chromosome 1) are
highly conserved members of the miR-29 family that share the
sequence homology at the seed region (nts 2-7) that decides the
fate of coding genes. PTGS of multiple ECM proteins by the
miR-29a-c family is one notable example of a single miRNA
family regulating multiple ECM proteins such as different
collagen isoforms, laminin 1, fibrilin 1, elastin, matrix metal-
loproteinase 2, hyaluronic acid, chondroitin sulfate, and
integrin 1.”” Predicted conserved binding sites for the miR-
29a-c family on the 3’-UTR of 20 collagen genes have been
identified.”® This property is unique to the miR-29 family
because the predicted binding sites of the collagen genes are
not attributed to any sequence homology in their 3'-untrans-
lated region.”® In adults, members of the miR-29 family cause
suppression of ECM genes, resulting in tissue repair with a
scar. Dysregulation of ECM caused by lower miR-29 is
associated with ﬁbr051s development in several organs,
including the heart,”” kidney,”” lung,”” and liver.*' Further-
more, miR-29 influences tissue differentiation and senes-
cence.”” Elevated expression of miR-29 may mitigate the
inhibitory effect of transforming growth factor-f on myo-
genesis by targeting histone deacetylase 4, a key inhibitor of
muscle differentiation.®® Tn adults, the elevated expression of
miR-29 suppresses insulin-like growth factor-1, p85a., and B-
myb, leading to onset of senescence of muscle progenitor cells
in vivo, thereby leading to muscle atrophy and sarcopenia.®*
Targeting YY1,*” a repressor of miR-29, may therefore be a

Table 1  Comparison of Nonintegrating Nonviral Methods for the Human Somatic Cell Reprogramming to iPSCs

Methods Time, days Efficiency, %  Success, %  Pros Cons References
miRNA 20 0.002 60—70 Zero footprint  Validated for only one cell type 57, 61, 62
mRNA 20—25 0.6—4.4 2030 Zero footprint  Cost, technically challenging, labor intensive  61—64
Protein 56 0.001 NA Zero footprint  Technically challenging, reprograming time 61, 64—66
Episomal 30 0.0006—0.02 80—90 Zero footprint  Low efficiency 61, 62, 67, 68
Minicircles 15 0.005 NA Zero footprint  Validated for only one cell type 61, 64, 68, 69
Piggybac 14—28 0.02 NA Zero footprint  No data show excision of transposon from 61, 70

iPSC, licensing/patent issue

iPSC, induced pluripotent stem cell; NA, not available.
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productive strategy to accelerate skeletal myogenesis. Osteo-
blast differentiation is also regulated by miR-29 via targeting
ECM proteins, anti-osteogenic factors and Wnt signaling
antagonists. >

Cell Reprogramming Using miRNA

Approaches and Caution

Synthetic locked nucleic acids conjugate oligonucleotides are
useful to modify the cellular levels of any particular
miRNA.®’ Furthermore, overexpression of pri-miRNA or
pre-miRNA with some flanking sequence may be more
biologically relevant than simply using the mature miRNA
sequence because the transcript may interact with the
endogenous cellular machinery, ensuring correct processing
and final functionality.*® A key challenge in the modulation
of miRNA signaling for tissue regeneration is the selection of
the right therapeutic candidates. An appropriately chosen
miRNA may modulate numerous functionally convergent
coding genes.® The miRNA is capable of influencing targets
at several levels in a regulatory network to deliver robust
biological output. To enable this, a thorough understanding
of miRNA—mRNA interactions is necessary. Developing
hypotheses aimed at understanding the intricate regulatory
networks with the help of in silico tools (eg, Targetscan,
PicTar, mi-RANDA) and validating such hypotheses exper-
imentally represent powerful approaches. High-throughput
methods such as argonaute high-throughput sequencing of
RNA isolated by cross-linking immunoprecipitation allow
the study of actual miRNA—mRNA interactions in any spe-
cific biological context. The ability to properly evaluate the
effect of an miRNA on a specific biological pathway will pave
the way for the identification of appropriate candidates for
therapeutic interventions. Because tissue regeneration is a
multifaceted process, miRNA therapies must consider the dif-
ferential requirements of the developmental program through
which participating cells will temporally progress. Appropriate
dosing and strategic targeting of specific cell populations are
necessary to obtain optimal functional outcome. Because the
incorporation of miRNA in the RISC complex is random in
mammalian cells, any alteration in the level of a particular
miRNA may also affect the activity of other miRNA by
competing for incorporation into the miRISC. Cancer is asso-
ciated with dysregulation of miRNA. Thus, any alteration in the
miRNA pool, if not properly targeted to the tissue of interest,
poses the risk of neoplastic outcome. As there is clear overlap
between key genes that control pluripotency and differentiation
with those genes that are integral to cancer,”” it is necessary to
meticulously design miRNA-based cell reprogramming stra-
tegies for the purposes of tissue repair and regeneration.
Challenges related to intelligent target selection coupled with
precision in dosing and spatiotemporal modulation of miRNA
targets must be addressed. There are several methods to deliver
miRNA to cells, including direct injection, viral, and nonviral-
based methods (Figure 4).

The American Journal of Pathology m ajp.amjpathol.org

Direct Injection

Direct injection is one of the simplest methods to deliver
miRNA and antagomiRNAs. The effect is typically short-
lived because the oligonucleotides are rapidly degraded by
nucleases in serum and cleared by the kidneys for their
inability to bind to plasma proteins. However, a single bolus
intravenous injection of locked nucleic acid—anti-miRNA
may be stable for several weeks and, hence, productive.g1

Viral Delivery

Virus-based miRNA delivery to cells is one of the most
widely used techniques in vitro.”” The most commonly used
are adenoviral, lentiviral, and retroviral vectors. Although the
viral vectors ensure long-term expression of the miRNA of
interest (or control of expression with inducible promoters),
this approach is not friendly for clinical translation because of
their inherent toxicity and immunogenicity concerns.”
Adeno-associated viral vectors are promising for in vivo
delivery of miRNAs because of lower risk of toxicity and
seemingly limited off-target effects.

Lipid Nanoparticles

In the biology of tissue repair and regeneration, controlled
release of bioactive reagents such as growth/differentiation
factors or interfering RNA is critical to directing cell fate.
These bioactive reagents may be loaded in lipid nano-
particles and supported by scaffolds for sustained local
delivery.” Unlike viral vectors, lipid nanoparticles offer
more flexibility in formulation and design for improved
uptake by the cells. In addition, enhanced delivery to spe-
cific tissues and cells may be enabled by the incorporation
of target ligands. Despite having several advantages, one of
the main limitations of this approach is the absence of an
appropriate mechanical support component necessary to
promote tissue repair and regeneration.’

Nano-Electroporation

Nanochannel electroporation may be used as a potential
method controlled delivery of specific amounts of miRNA into
living cells. These devices are made of microchannels con-
nected by nanochannels. With the use of an optical tweezer,
the target cell is positioned in one microchannel, and the
miRNA of interest may be placed in the second micro-
channel.”” The production of an intense electric field is guided
by the introduction of a voltage pulse between microchannels
directed at a very small area on the cell membrane. This en-
ables controlled delivery of specific amounts of oligonucleo-
tide driven electrophoretically through the nanochannel, cell
membrane, and into the cytoplasm while defending cell
viability.”> Variations in the duration of nanoelectroporation
and number of pulses applied may help control dosage of
cargo delivery. Although there is no reported in vivo evidence
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yet, such a nanochannel electroporation device has the po-
tential to support tissue repair and regeneration in vivo.

These highly sophisticated miRNA delivery methods
cannot only deliver miRNA to cells of interest but can also
be used for preparing cells with a desired miRNA payload
for efficient cell based therapies.

miRNA in Cell-Based Therapies

Live cells may be used to package and deliver miRNAs of
interest to tissue repair and regeneration. In this approach,
paracrine effects of such implanted cells may guide tissue
repair and regeneration. The lifetime of such cells can be
controlled by natural and engineered circuits such as
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introduction of death signaling pathways’® or multiple
auxotrophies (metabolic dependencies). The key control
modules in the cell engineering toolbox is provided in
Table 2. In cell-based therapies, the notion of paracrine ef-
fects that drive repair and regeneration is well established.
For example, the beneficial activities of mesenchymal SCs
are mediated by the secretion of pro-regenerative and anti-
inflammatory growth factors in cardiac repair’’ or graft-
versus-host disease.”® miRNAs may be shuttled between
cells packaged in small membrane-bound extracellular
vesicles (EVs) (eg, exosomes, shedding vesicles, apoptotic
bodies) that can then amend gene expression of their target
cells.”” Thus, as a natural extension we hypothesize that
cells could be used to deliver miRNAs to promote tissue
regeneration. Alternatively, these EVs could be isolated and
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Table 2  Key Control Modules in Cell Engineering Toolbox

Events Rationality

Cell proliferation
Cell death
Cell migration

To ensure their survival on implantation
To ensure their survival on implantation

action
Cell communication

Cell secretions

Cell response

To redirect cellular movement toward specific signals and sites in the body where the cells should execute their

To reprogram cell—cell, small molecule—cell, and biologic—cell communication

For on-demand production and secretion of small molecules and biologics by engineered cells, extending beyond
those molecules that a cell naturally makes

For quantitative control of therapeutic cellular responses

used to deliver a pro-regenerative miRNA payload. There is
some interest in the use of EVs for miRNA delivery. miR-
146a overexpression in human embryonic kidney 293T cells
elevated the miRNA level in EVs released from cells and
transfected cells.'” This approach of using cells as delivery
vehicles is related to previous work that used genetically
engineered MSCs to deliver proteins and to modulate in vivo
tissue response.’’’ An advantage, particularly when using
MSC:s for this strategy, is that they naturally home to sites of
disease or injury; therefore, they may provide a natural
targeting mechanism to deliver miRNAs to the site of in-
terest.'”” MSCs transfected with mimics of miR-124 and
miR-145 have successfully delivered these miRNAs to gli-
oma cells. MSCs loaded with miRNAs of interest are able to
change gene expression and cellular behavior in vivo.'"”
The importance of EVs in explaining such observations
remain to be understood.

Tissue Engineering

The ease by which the miRNAs may be overexpressed or
repressed with sharp molecular tools renders them highly
suitable for tissue reconstruction from SCs. In some in-
stances miRNA have overcome the need for growth factors.
Currently, miRNAs are widely used in the tissue engineer-
ing of cartilage, bone, and skeletal muscle. Repairing the
injured cartilage is challenging, but it holds great promise
for the treatment of osteoarthritis and spinal disk herniation.
Although repairing major cartilage injury by using bioma-
terial implant and MSCs has proven to be highly successful,
a critical limitation is the unstable phenotype of stem cell-
derived chondrocytes compared with their endogenous
counterpart. Under in vivo conditions, the artificial implant
undergoes terminal differentiation, followed by ossifica-
tion.'™ Addition of miR-133 prevents such unwanted
ossification. ' Furthermore, addition of miR-675 and miR-
221 promotes expression of collagen II and proliferation of
mature chondrocytes. In bone engineering, seeding MSCs
with miR-148b mimics and miR-489 inhibitor to the
osteoinductive scaffold results in increased matrix deposi-
tion and calcification.'’® Human satellite cells, important in
the tissue engineering of the skeletal muscle, may be treated
with miR-1 and miR-206 to improve their differentiation
potential.'”’
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Biomaterial scaffolds play a key role in scar formation
associated with wound healing. These ECM-derived scaf-
folds, in addition to serving as physical support to promote
tissue organization, resist aggressive wound contraction'”®
and scar tissue formation.'”” These scaffolds also serve as
vehicles to deliver bioactive substances such as cyto-
kines,''? growth factors, '’ living cells,""! and vectors for
gene therapy. Primary fibroblasts cultured on miR-29b—
loaded scaffolds resulted in attenuated levels of collagen
type I and IIT gene expression.''> Application of this scaf-
fold to full-thickness wounds in vivo limited wound
contraction and enhanced the collagen type III:I ratio and
the MMP-8:TIMP-1 ratio in a dose-dependent manner.''* It
is thus evident that a combination of suitable miRNAs
with collagen scaffolds may help in post-injury matrix
remodeling.

Conclusion

With cues from tissue development process, miRNAs may be
productively used to improve tissue repair and regeneration.
Such influence is executed either via endogenous repair mech-
anisms or by directing the activity of implanted cells at the injury
site. Changes in cellular phenotype as evident during dediffer-
entiation, transdifferentiation, or cellular reprogramming are
directly linked to miRNA function within the cell. miRNA-
based approaches have opened novel avenues to produce sub-
stantial amounts of iPSC clones without the need for genomic
integration. Although the science is still in its infancy, the po-
tential applications of miRNA-based therapies for tissue engi-
neering and regenerative medicine are promising. Compared
with contemporary methods of ectopic gene expression
currently used in regenerative medicine, strategies to transiently
manipulate cellular miRNA by using targeted mimics and in-
hibitors hold substantial promise. However, off-target effects of
therapeutic miRNA remain a relevant concern. Parallel ad-
vances in novel delivery technologies such as lipid nanoparticles
and nanochannel electroporation are beginning to address some
of the key stability and toxicity issues, thus making miRNA-
based therapies more translationally relevant. Currently,
there are 152 open clinical studies on miRNAs worldwide
(ClinicalTrials.gov,  https://clinicaltrials.gov/ct2/results?
term=miRNA+and+Tissue+repair&Search= Search, last
accessed March 30, 2015). Of these, six trials are on miRNA
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and tissue repair, of which three are based in the United
States. The race to perfect miRNA-based therapies is one of
high stakes and has the clear potential to transform reparative
and regenerative medicine.
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