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Historical Perspective

Ancient alchemical obsession with the elixir of life preceded
historical reports supporting regeneration in some animals
and certain organs, as was immortalized in the classical
Greek mythology of Prometheus and the regeneration of his
liver. Validity to this mythology was provided by the French
scientist René-Antoine Ferchault de Réaumur in 1712, who
reported the occurrence of regeneration in crayfish.1 In
1766, Peter Simon Pallas reported this phenomenon in
flatworms of the genus Planaria, the experimental analysis
of which was published later based on the work of John
Graham Dalyell in 1814 and J.R. Johnson in 1822 (reviewed
by Brøndsted2). Additional work by Abraham Trembley and
Lazzaro Spallanzani extended the idea to include a wide
range of phyla in the animal kingdom, including hydra,
earthworms, snails, aquatic salamanders, tadpoles and frogs
(reviewed by Dinsmore3). Our current aspiration for
regenerative medicine therefore rests on the foundations laid
by studies on all of the above mentioned organisms as well
as on insects and zebrafish.3

The inspiration for mammalian regeneration is further
refined by the proceedings of developmental biology
(Figure 1).1,2,4e10 During development, the inherent physi-
ological plasticity of stem cells and primary progenitor cells
prompts the onset of differentiation in response to the
appropriate stimuli, resulting in the generation of cell types
that are mature and specialized and functionally integrate
into organs and tissues. The fetus is widely recognized for
its perfect execution of tissue regeneration that is otherwise
absent in adults.11 Do drivers of the fetal repair process exist
in the adult tissue either in part or in its entirety? And if the
critical elements are present, how are they silenced? Or is it
true that the entire fetal regenerative apparatus is obliterated
leaving the adult tissue permanently deprived? In this issue
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of The American Journal of Pathology, we present the
Regenerative Medicine Theme Issue, which explores our
understanding of these processes as well as current advances
in experimental models. The Review articles in this
collection discuss macrophage plasticity and polarization,
dysfunction of progenitor cells under conditions of diabetes,
stem cell plasticity, and the emerging importance of miRNA
in tissue regeneration. These Reviews provide critical
insight into these complex unfolding frontiers of regenera-
tive medicine.

Cellular Plasticity

Emerging evidence suggests a turning back of the dial of
cellular plasticity in response to injury which could include
the acquisition of multipotency or a reversion to stem-like
state in an effort to support tissue repair.12 Epithelial
mesenchymal transitions (EMT), under conditions of wound
healing, may be considered as a classical example of cellular
plasticity. This was first demonstrated by the Hungarian
pathologist Ödön (Edmund) Krompercher in 190810 in
human skin and salivary gland tumors in which basal
epithelial cells in contact with hyaline were found to tran-
sition to mesenchymal cells. However, the credit for the
discovery of this phenomenon was given to Greenburg and
Hay13 for studies performed in adult and embryonic anterior
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Figure 1 A schematic timeline of the history of
regeneration, stem cell research, cellular transi-
tion, and cell reprogramming. Although these
areas of research were initially considered to be
different, they now form an integral part of
regenerative medicine.1,2,4e10
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lens tissue. Such cellular transition is commonly exhibited
not only by stem cells but also by blood-borne monocyte-
derived macrophages. Das et al14 have addressed the sig-
nificance of plasticity in macrophages and monocytes and
their relevance to tissue regeneration and repair.

The search for transcription factors determining cell fates
and reprogramming in mammals has been an ongoing quest
boosted by the identification of Yamanaka factors, which
were found to revert terminally differentiated cells to a
pluripotent state. Furthermore, study of the hair follicle stem
cell model has led to the recognition of superenhancers,
dynamic support systems that serve as platforms for tran-
scription factor binding in the process of cell plasticity
regulation. Interestingly, these super-enhancers are exqui-
sitely sensitive to fine tuning by master regulators such as
SOX-9.15 These observations lead to the following ques-
tions: if the above-said factors may revert cell phenotype,
then why and how are these factors silenced in adult sys-
tems? And in adults, can these factors be unleashed in a
regulated manner to achieve tissue regeneration?

Diabetic Complications and Chronic
Inflammation

Diabetic complications compromise the function of pro-
genitor cell populations. In this issue of the AJP, Rodrigues
et al16 address the effects of hyperglycemic memory on stem
cells and provide guidance on how to use stem cell therapy
under conditions of diabetes. In scenarios where one stem
cell niche malfunctions, stem cells from other compartments
are recruited to repair the damaged tissue. Grossly under-
rated compared to stem cells, the significance of macro-
phage plasticity in adult tissue repair is substantial. Das
et al15 critically address plasticity of monocytes and mac-
rophages in the context of tissue repair and regeneration.
The American Journal of Pathology - ajp.amjpathol.org
Roughly 15 years ago, the pro-inflammatory M1 and pro-
healing M2 phenotype of macrophages were considered to
be two distinct populations of cells. Although this dichot-
omous paradigm explaining macrophage phenotype
perpetuated for the better part of a decade, experimental
observations challenging this overly simplified model
continued to mount. It was soon recognized that M1 mac-
rophages may transition to reparative M2 phenotype under
supportive conditions.17 These conditions that hold the key
to the resolution of inflammation are of extraordinary in-
terest.18,19 Under pathological conditions such as diabetes,
incompetence of the stem cell apparatus is further compli-
cated by an arrest of M1/M2 polarization resulting in
accumulation of macrophages stalled in M1 and presenting
a state of chronic inflammation.20 Advancing M1 to M2
under conditions of diabetes represents a productive
approach to break the deadlock of chronic inflammation and
to resume the healing process.
Macrophage Fate at the Site of Tissue Repair

Current understanding of macrophage transdifferentiation is
mostly supported by observations on cellular transition with
cells co-expressing macrophage and endothelial markers.
Although in some cases evidence from lineage tracing
studies are present, the mechanistic underpinnings defining
macrophage plasticity remain obscure. Examples of such
plasticity include transdifferentiation of macrophages to
endothelial progenitor cells to support tissue vasculariza-
tion.21 Transdifferentiation of monocytes and macrophages
to functional endothelial cells has been demonstrated by
overexpression of proteins like vascular endothelial growth
factor (VEGF)21 and pleiotrophin.22 This in vivo reprog-
ramming of cellular identity using direct transdifferentiation
strategies has been also demonstrated in the mouse brain,
2593
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spinal cord, heart, pancreas, and liver. Recently, a remark-
able advancement in regenerative medicine was achieved by
introducing a defined cocktail of transcription factors
directly into the adult somatic cells resulting in reprogram-
ming of adult cells from one type to the other.23 This is
exemplified in studies that converted exocrine cells from the
pancreas into beta cells.24 Similar goals may be achieved by
the use of purified recombinant proteins or whole-cell
extracts isolated from either embryonic stem cells or
genetically engineered HEK293 cells.25 Although this
protein-based, non-viral approach is attractive at first sight,
its efficiency is poor and therefore not best suited for ther-
apeutic interventions.26
Challenges in Gene Delivery and miRNA
Solutions

In regenerative medicine, the therapeutic utility of in vivo
reprogrammed cells in tissue repair and regeneration largely
depends on the safe, efficient, and robust delivery of
reprogramming factors. In this context, Smith and Zhang27

deconstruct the complexities related to reprogramming
adult cell identity in vivo. Although viral transduction is
commonly practiced for gene delivery in laboratory animals,
barriers to adopt such an approach for human applications
are substantial. Genomic integration following viral trans-
duction increases the risk of modifying recipient chromo-
somal locus making the recipient genomic loci unstable.28

Although the integration frequency of adenovirus into
chromosomal DNA in vitro was estimated to be in the order
of 10�3 to 10�5 events per cell,29 caution should be exer-
cised while assessing in vivo risks based on such in vitro
data. Do RNA viruses integrate into the host genome?
Although theoretical arguments rule out that possibility
presenting Sendai viruses as a better choice, Arenavirus
reverse-transcribed genome has been detected in infected
mice.30 Furthermore, Bornaviridae, Filoviridae, and Toti-
viridae sequences have successfully integrated into several
mammalian genomes indicating that possibility of integra-
tion of RNA virus into the host genome may not be sum-
marily rejected.31e33 Taken together, viral gene delivery is
not a safe proposition from a translational perspective.

In pursuit of virus-free transduction strategies, recent
studies have demonstrated pluripotent stem cell generation
in vitro using minicircle DNA constructs in human adipose
stromal cells and in vivo using hydrodynamic tailevein
injection of DNA constructs in the adult mouse liver.34,35

Low efficiency of these approaches represent a serious
concern.36 mRNA-based reprogramming represents another
option for virus-free transduction.37 However, limitations of
such approach include inherent complexities related to
cellular procedures and purification of reprogrammed
cells.37 In addition, the expression of reprogramming factors
is robust for approximately 24 hours after mRNA trans-
fection. Unfortunately, there is a long two- to three-week lag
2594
between expression of reprogramming factor proteins and
induction of pluripotency in human cells. Finally, repeated
transfections that are needed to generate induced pluripotent
stem cells is time intensive.37 In this theme issue, we have
reviewed the emergent significance of miRNA in tissue
repair and regeneration.38 The observation that miRNA does
not integrate into the genome makes miRNA-based thera-
peutic strategies translationally valuable.39
Concluding Remarks

Success in regenerative medicine will be measured by its
impact on functional biological outcomes. It relies on using
the body’s own regenerative capabilities to restore the
function of damaged and degenerating cells, tissues, and
organs. Although the discovery of novel principles gov-
erning cellular plasticity represents major advancements in
cell biology, unless such principles are leveraged to restore
functional outcomes in vivo, milestones in regenerative
medicine will remain unmet. For example, the study of
macrophage plasticity in chronic wounds would require that
functional wound macrophages be isolated from the wound
site as opposed to the study of differentiated monocytes
isolated from peripheral blood.40 To successfully rescue and
restore a diseased or degenerating tissue, discovery in
regenerative medicine must involve appropriate preclinical
and clinical experimental models that approach the com-
plexities of the actual pathology. Toward this end, we hope
this Review Series will stimulate discussion and further
interest this important area of research.
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