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Abstract
Preserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion 
(I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial 
connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of 
mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17β-estradiol, E2) on Cx43, 
particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated 
mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout 
without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min 
warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide produc-
tion were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-
20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine 
mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex dispari-
ties in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes 
following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased 
Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abol-
ished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males 
with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 
content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.
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Introduction

Despite significant advances in current therapy, myocar-
dial ischemia continues to be a leading cause of mortality 
in developed countries for both men and women [5]. Dur-
ing occlusion of a coronary artery, timely restoration of 
blood flow to the heart (reperfusion) remains the primary 
treatment of choice for myocardial ischemia, which in turn 
results in ischemia reperfusion (I/R) injury. Mitochondria, 
one of the most important subcellular organelles in cardio-
myocytes, are a central player in determining the severity 
of myocardial damage during I/R injury [45]. Preserving 
mitochondrial integrity and activity is critical to lessen-
ing myocardial impairment after I/R. Mitochondrial mod-
ulation has thus become an area of growing therapeutic 
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interest. Of note, clinical studies have shown that women 
are at an advantage on cardiac recovery after myocardial 
ischemia, as demonstrated by smaller infarct size, better 
myocardial salvage, enhanced myocardial perfusion, and 
improved survival in women compared to age-matched 
men [14, 23, 24, 41, 53–55]. However, few studies have 
focused on investigating sex-related cardiac mitochondrial 
function, particularly during acute I/R injury.

On the other hand, although sex differences are owing 
to multiple factors, female hormone–estrogen is critical in 
mediating cardiac protection in the cardiovascular system. 
Our previous work has shown that female rodent hearts 
exhibited better cardiac recovery than male hearts follow-
ing acute I/R injury [81, 83, 85, 86] and this salutary effect 
was attributable to the rapid action of estrogen [73, 79, 
86]. It is noteworthy that most studies related to estrogen 
therapy in the cardiovascular system employ an approach 
of preventive usage of estrogen in clinical research or pre-
ischemic treatment in animal experiments [12, 38, 39, 48, 
76]. Given clinical therapeutic potential in the treatment 
of acute myocardial ischemia, a strategy of post-ischemic 
administration of estrogen will be more practical compared 
to pretreatment. In fact, post-injury treatment with estro-
gen has been tested in other acute injury models including 
trauma hemorrhage [1, 36, 46], burn [92], and sepsis [44, 
47]. However, it is unknown whether post-ischemic estro-
gen usage is able to provide mitochondrial preservation, 
thus protecting myocardium against I/R.

Connexin-43 (Cx43 or Gja1), a gap junction protein, is 
well documented on maintaining the cell-to-cell (intercel-
lular) electrical coupling for synchronized cardiac contrac-
tion [31, 33, 59, 74, 75]. Emerging evidence has indicated 
that Cx43 is present in cardiomyocyte subsarcolemmal 
mitochondria (SSM, one major population of mitochon-
dria that locate directly beneath the sarcolemma and are 
in contrast to another population of mitochondria–inter-
fibrillar mitochondria [IFM] that are aligned among the 
myofibrils) [11, 71, 72]. Mitochondrial Cx43 significantly 
contributes to protecting myocardial function during I/R 
[7, 11, 57, 62, 72, 93]. Cardiac protective approaches to 
increasing myocardial SSM Cx43 mediate mitochondria-
derived protection [7, 11, 62, 65, 71, 72]. Interestingly, 
total and mitochondrial Cx43 content is reduced in aged 
mouse hearts, likely contributing to the age-associated loss 
of cardiac protection [8]. Cx43 expression is also affected 
by sex with the higher level in female rat hearts compared 
to male rats [43, 77]. Furthermore, chronic estrogen sup-
plementation prior to injury preserves myocardial Cx43 
levels [16], suggesting a link between sex/estrogen and 
Cx43. Therefore, in this study, we determined the impli-
cation of sex in safeguarding mitochondrial function 
upon acute cardiac stress and examined the effect of post-
ischemic estrogen (17β-estradiol, E2) treatment on Cx43, 

particularly mitochondrial Cx43-involved cardiac protec-
tion following acute I/R.

Methods and materials

Animals

Male and female C57BL/6J mice were purchased from 
the Jackson Laboratories (Bar Harbor, ME, USA). Female 
C57BL/6J mice were ovariectomized at 5–6 weeks old 
and purchased as surgically modified animals. Our previ-
ous study has shown that ovariectomy (OVX) significantly 
decreased serum levels of E2 in female animals [86]. All 
mice were acclimated for at least 5 days with a standard diet 
before experiments. Mice at 10–18 weeks old were used for 
the experiments. Doxycycline-inducible Tnnt2-controlled 
Cx43 knockout (Cx43-ic-KO) was generated by using doxy-
cycline-inducible Tnnt2-cre mice [90, 96] bred with Cx43flox/

flox mice (the Jackson Laboratories). Cx43flox/flox (Tnnt2-Cre 
negative) mice were used as control mice. The Cx43 dele-
tion was carried out by feeding doxycycline-containing chow 
(doxycycline 200 mg/kg, Big-Serv) for 10 days. The animal 
protocol was reviewed and approved by the Institutional 
Animal Care and Use Committee of Indiana University. All 
animals received humane care in compliance with the Guide 
for the Care and Use of Laboratory Animals (NIH Pub. No. 
85-23, revised 1996).

Adult mouse cardiomyocyte isolation 
and treatments

Single cardiomyocytes were isolated from adult male 
and female mouse hearts using a Langendorff perfusion 
isolation system. After mice were injected with heparin 
(100 IU, i.p.), they were euthanized with isoflurane over-
dose. The hearts were excised rapidly and placed in ice-
cold calcium-free perfusion buffer containing (in mM): 
NaCl 113, NaH2PO4 0.6, NaHCO3 1.6, KCl 4.7, KH2PO4 
0.6, MgSO4 1.2, HEPES 10, taurine 30, 2,3-butanedione 
monoxime (BDM) 10, and glucose 20 (pH 7.4). Hearts 
were retrogradely perfused and digested with collagenase 
II (1.5 mg/ml) as described previously [40]. After iso-
lated cardiomyocytes were sequentially restored in perfu-
sion buffer containing calcium (100, 250, 500, or 1000 
μmol/L CaCl2), they were seeded into laminin (20 μg/
ml)-precoated 96-well plate with cardiomyocyte plating 
medium (MEM with glutamine + 2.5% FBS, 10 mM BDM, 
and 1% Pen/Strep) and cultured for 2 h at 37 °C, 5% CO2 
for adherence. After that, both male and female cardio-
myocytes were treated with vehicle, E2 (100 nM), H2O2 
(50 μM), or E2 + H2O2 for 1 h. Doses for E2 and H2O2 
were selected based on the previous work from our group 
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[80, 84] and Dr. Sen’s laboratory [64]. The final H2O2 
dose was also determined by a dose–response study (Fig-
ure S1A and S1B). We further performed simulated I/R 
on cardiomyocytes isolated from male and female mice. 
We pelleted primary mouse cardiomyocytes in hypoxic 
solution (NaCl 119, KCl 5.4, MgSO4 1.3, NaH2PO4 1.2, 
HEPES 5, MgCl2 0.5, CaCl2 0.9, lactate 20, in mM, BSA 
0.1%, pH = 6.5), covered with a layer of mineral oil [13, 
34, 51], and incubated them at 37 °C for 20 min. The 
period for simulated ischemia was selected on a prelimi-
nary study (Figure S1C). After simulated ischemia, cells 
were cultured in perfusion buffer (+ CaCl2 1 mM, BSA 
0.5%) without or with E2 (100 nM) for 60 min (re-oxygen-
ation or simulated reperfusion). Mitochondrial membrane 
potential and mitochondrial superoxide production were 
determined in these cardiomyocytes afterward.

Assessment of mitochondrial membrane potential

Isolated mouse cardiomyocytes after treatments were incu-
bated with cardiomyocyte plating medium or perfusion 
buffer (+ CaCl2 1 mM, BSA 0.5%) containing a fluorescent 
probe JC-1 (1 μM, G-Biosciences, St. Louis, MO, USA) at 
37 °C. JC-1 enters into the cytosol as monomers showing 
green fluorescence, while it goes into mitochondria form-
ing dimers/aggregates and turns into red fluorescence. After 
a 30-min incubation, live cell imaging on cardiomyocytes 
was done using an Axio Observer Z1 motorized microscope 
(Zeiss, Oberchoken, Germany) with a 10× objective. Red 
and green fluorescence intensity in individual cardiomyocyte 
was quantified using ImageJ (NIH). The red to green fluores-
cence intensity ratio indicates the mitochondrial membrane 
potential.

Measurement of mitochondrial superoxide 
production

After the treatments, isolated mouse cardiomyocytes were 
loaded with MitoSOX Red (5 μM, Thermo Fisher Scien-
tific, USA) in cardiomyocyte plating medium or perfusion 
buffer (+ CaCl2 1 mM, BSA 0.5%) and incubated at 37 °C 
for 20 min. MitoSOX Red specifically targets mitochon-
dria in live cells. The more superoxide production in mito-
chondria, the greater is the fluorescence intensity observed. 
After 20-min incubation, cells were washed two times with 
cardiomyocyte plating medium. The live cell imaging on 
cardiomyocytes was done using an Axio Observer Z1 motor-
ized microscope (Zeiss, Oberchoken, Germany) with a 10× 
objective. Red fluorescence intensity in an individual car-
diomyocyte was quantified using ImageJ (NIH), which indi-
cated mitochondrial superoxide production.

Isolated mouse heart preparation (Langendorff 
model)

Mouse hearts were isolated and subjected to Langendorff 
I/R as we previously described [37, 80, 82, 83, 85, 87]. 
Briefly, mice were anesthetized with isoflurane and hep-
arinized (100 IU i.p.), and hearts were rapidly excised. The 
isolated heart was placed in ice-cold KH perfusion buffer for 
aorta annulation under a dissection microscope. The heart 
was then perfused in the isovolumetric Langendorff mode 
(70 mmHg) and paced at 420 bpm/min during the whole 
experimental time except ischemia. Data were continuously 
recorded using a PowerLab 8 preamplifier/digitizer (AD 
Instruments Inc., Milford, MA). The maximal positive and 
negative values of the first derivative of pressure (+ dP/dt 
and -dP/dt) were calculated using PowerLab software.

Isolated mouse hearts were subjected to the I/R proto-
col as follows: at least 15-min equilibration followed by 
25-min global ischemia (37 °C) and 40-min reperfusion. 
Post-ischemic treatment with vehicle or 2 nM of E2 [73] 
during the entire period of reperfusion was performed on 
male, normal female, and OVX female mouse hearts.

Infarct size measurement

The left ventricle (LV) from another set of male and OVX 
female mouse hearts without or with post-ischemic E2 
treatment, as well as normal female mouse hearts after 
25-min global ischemia (37 °C) and 40-min reperfusion, 
was frozen for 30 min at − 20 °C and transversely sectioned 
into ~ 1 mm-thick slices (along the long axis) using a mouse 
heart slicer. The heart slices were stained with 1% 2,3,5-tri-
phenyltetrazolium chloride (TTC) for 10 min at 37 °C and 
then transferred into 10% neutral formalin overnight. Images 
were taken and each slice was weighted the day after. The 
infarct area and the LV area were analyzed in each slice 
using ImageJ (NIH). The infarct size (percentage) was cal-
culated as total infarct weight per total LV weight from all 
slices [13, 95]. The researcher performing infarct size meas-
urement was blinded to the experimental groups.

Mitochondria isolation from mouse hearts

Mitochondrial and cytosolic fractions were separated by 
differential centrifugation using mitochondria isolation 
kit for tissue (Thermo Fisher Scientific) according to the 
manufacturer’s protocols.  SSM and IFM were isolated 
using the methods described previously [71, 72]. Follow-
ing experiments, the heart was minced in mitochondrial 
isolation buffer (pH 7.2, in mM: mannitol 225, sucrose 75, 
MOPS 10, Tris–HCl 10, EGTA 1, and 0.1% bovine serum 
albumin [BSA] and homogenized with a D1000 handheld 
homogenizer (Benchmark Scientific, Atkinson, NH). After 
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centrifugation at 500g, 4 °C for 5 min, the supernatant was 
collected and added with Halt protease and phosphatase 
inhibitor cocktail (Thermo Scientific) for the SSM prepa-
ration, while the pellet was digested in isolation buffer 
containing trypsin (5 mg/g pellet) for 10 min on ice and 
homogenized using a Teflon pestle. Digestion was stopped 
by adding Halt protease and phosphatase inhibitor cocktail. 
Each fraction was spun at 500g for 5 min at 4 °C and the 
supernatant was centrifuged at 3000g at 4 °C for 10 min to 
pellet SSM and IFM, respectively. The crude mitochondrial 
pellets from either SSM or IFM were resuspended in isola-
tion buffer with protease and phosphatase inhibitors, and 
protein content was determined using a Bradford assay.

Western blotting

The heart tissues were lysed in cold RIPA buffer containing 
Halt protease and phosphatase inhibitor cocktail (Thermo 
Fisher Scientific). The protein extracts (10–30 μg) from 
heart tissue or mitochondria were subjected to electrophore-
sis on a 4–15% Criterion TGX Precast midi protein gel (Bio-
Rad, Hercules, CA, USA) and transferred to a nitrocellulose 
membrane. The membranes were incubated with the follow-
ing primary antibodies, respectively: phospho-Cx43 (ser368, 
#3511), Cx43 (#3512), GAPDH (#5174), LAMP1 (#3243), 
ATP2A2/SERCA2 (#9580), Na, K-ATPase (#3010), Gol-
gin-97 (#13192), Cox IV (#4850), VDAC (#4661) (Cell 
Signaling Technology, Beverly, MA, USA), Cx43 C-termi-
nus (AB1728, MilliporeSigma, Burlington, MA, USA), his-
tone H3 (PA5-16183, Thermo Fisher Scientific), followed by 
horseradish peroxidase-conjugated goat anti-rabbit or anti-
mouse secondary antibody. Detection was conducted using 
SuperSignal West Pico stable peroxide solution (Thermo 
Fisher Scientific). Immunoblotting band density measure-
ment was performed using the Image J software (NIH).

Co‑immunoprecipitation assay (Co‑IP)

Mitochondria extracts were obtained from OVX F hearts 
without or with E2 treatment using mitochondria isolation 
kit for tissue (Thermo Fisher Scientific) and added in ice-
cold IP lysis/wash buffer. Co-IP was performed on mito-
chondrial lysates using the Co-IP kit (Thermo Fisher Sci-
entific) based on the manufacturer’s instructions. Briefly, 
antibody immobilization was achieved by using AminoLink 
plus coupling resin incubated with 5 μg of anti-ERα anti-
body (MA5-13065, Thermo Fisher Scientific). Lysates were 
then incubated with anti-ERα resin at 4 °C overnight. After 
elusion, proteins were probed by Western blotting with anti-
bodies against ERα and Cx43.

Transmission electron microscopy (TEM)

The heart tissue was fixed with 3% glutaraldehyde in 0.1 M 
sodium cacodylate (SC) buffer and rinsed with 0.1 M SC 
buffer, followed by post-fixation with 1% osmium tetroxide 
in 0.1 M SC buffer for 1 h. After the second rinse, the tis-
sue specimens were dehydrated through a series of graded 
ethyl alcohols from 70 to 100% and then infiltrated with two 
changes of 100% acetone and a 50:50 mixture of acetone 
and embedding resin (Embed 812, Electron Microscopy Sci-
ences, Hatfield, PA, USA) for over the weekend. Specimen 
vial lids were popped and acetone allowed to evaporate off 
for 3 h. Then specimens were embedded in a fresh change 
of 100% embedding media. Following polymerization over-
night at 60 °C, the blocks were then ready to section. Thin 
sections were cut (80–90 nm), stained with UA replace-
ment stain (Electron Microscopy Sciences), and viewed on 
a Tecnai Spirit (ThermoFisher, Hillsboro, OR, USA). Digital 
images were taken with an AMT (Advanced Microscope 
Techniques, Danvers, MA, USA) CCD camera in a blinded 
fashion. The mitochondrial content was determined by quan-
tifying the number and the size of each mitochondrion per 
field using the Image J software (NIH).

Immunoelectron microscopy

The heart tissue was fixed with 4% paraformaldehyde in 
0.1 M SC buffer. After being rinsed in 0.1 M SC buffer and 
dehydrated through a series of graded ethyl alcohols from 
70 to 100% ETOH, the specimens were placed in half 100% 
ETOH and half embedding resin, Unicryl (Electron Micros-
copy Sciences, Hatfield, PA, USA), overnight at 4 °C. The 
specimens were then embedded in fresh resin and polymer-
ized at 4 °C using a UV light (360 nm wavelength). Thin 
sections were cut (80–90 nm), placed on formvar/carbon-
coated grids, dried, and readied for immunostaining. After 
blocking and permeabilization, the sections were incubated 
with anti-Cx43 antibody (1:5, 71-0700, Thermo Scientific) 
over the weekend, rinsed three times in incubation buffer, 
and subsequently, incubated with anti-rabbit colloidal gold 
10 nm (1:50, Aurion, Electron Microscopy Sciences) over-
night at 4 °C. After being rinsed, the sections were put in 
2% glutaraldehyde for post-fixation (5 min), in 1% OsO4 
(2 min) and then stained with UA replacement stain (Elec-
tron Microscopy Sciences) for 10  s. The sections were 
viewed on Tecnai Spirit (ThermoFisher). Digital images 
were randomly taken with an AMT (advanced microscope 
techniques) CCD camera in a blinded fashion.

Statistical analysis

All reported results were mean ± SEM. Data were evalu-
ated using unpaired t test or analysis of variance (ANOVA) 
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followed by multiple comparison test. Difference was con-
sidered statistically significant when p < 0.05. All statistical 
analyses were performed using the GraphPad Prism (Graph-
Pad, La Jolla, CA, USA).

Results

Sex differences in cardiomyocyte mitochondrial 
function

We first determined the mitochondrial membrane potential 
and mitochondrial superoxide production between male and 
female mouse cardiomyocytes. We observed a higher level 
of mitochondrial membrane potential in female cardiomyo-
cytes than in male counterparts as determined by higher red/
green fluorescence ratio in female cells (Fig. 1a), but no sig-
nificant difference was noticed in sex-based mitochondrial 
superoxide production under normal condition (Fig. 1b). 
Considering substantial amount of reactive oxygen species 
(ROS) produced following I/R [18], we selected H2O2 to 
mimic I/R and to stress cardiomyocytes. Our results revealed 
that H2O2 markedly decreased mitochondrial membrane 
potential in both male and female cardiomyocytes (Fig. 1c). 
However, male cardiomyocyte mitochondria generated more 
superoxide than female ones in response to H2O2 (Fig. 1d). 
To better represent clinical I/R injury [13, 34, 51], we also 
performed simulated I/R experiments on isolated cardiomy-
ocytes. We found that simulated I/R significantly damaged 
mitochondrial membrane potential in the male and female 
cardiomyocytes (Fig. 1e) and triggered more mitochondrial 
superoxide generation in male cardiomyocytes than female 
ones (Fig. 1f), suggesting less oxidative stress in female car-
diac mitochondria than male ones in response to I/R.

E2 treatment preserves mitochondrial membrane 
potential and reduces mitochondrial superoxide 
production in cardiomyocytes

Considering the importance of estrogen in mediating sex-
dependent responses in the cardiovascular system, we 
next assessed the effect of E2 on mitochondrial perfor-
mance in both male and female mouse cardiomyocytes 
that were subjected to H2O2 or simulated I/R. E2 preserved 
H2O2-disrupted mitochondrial membrane potential and 
decreased H2O2-induced mitochondrial superoxide produc-
tion in male mouse cardiomyocytes (Fig. 2a). Intriguingly, 
E2 treatment starting at the onset of reperfusion and present 
at the complete period of re-oxygenation significantly pro-
tected male cardiomyocyte mitochondria (Fig. 2b) against 
simulated I/R as demonstrated by preserved mitochondrial 
membrane potential and decreased mitochondrial superox-
ide generation in part. Furthermore, female cardiomyocyte 

mitochondrial membrane potential was also protected by E2 
usage following H2O2 or simulated I/R (Fig. 2c).

Acute post‑ischemic infusion of E2 improved 
myocardial functional recovery and reduced infarct 
size following I/R

Post-ischemic E2 usage may be beneficial in a clinical set-
ting. We observed that post-ischemic administration of E2 
significantly improved myocardial functional recovery (left 
ventricular developed pressure [LVDP] and ± dP/dt) in male 
(Fig. 3a–c) and ovariectomized female (OVX F) mouse 
hearts (Fig. 3e–g) following I/R compared to vehicle groups. 
To further estimate a degree of I/R injury [13], we measured 
myocardial infarct size. We found E2 treatment during rep-
erfusion markedly reduced infarct size in male (Fig. 3d) and 
OVX F hearts (Fig. 3h) after I/R. We also noticed a signifi-
cant decrease in infarct size for female mouse hearts com-
pared to male hearts subjected to I/R (Fig. 3i). No significant 
change of LVDP was noticed in male and OVX F stability 
controls (Fig. 3j). Not surprisingly, we did not observe any 
difference in female hearts without or with post-ischemic E2 
treatment (Fig. S2).

Sex‑dependent mitochondrial levels of Cx43 
following acute I/R

Given better myocardial functional recovery in female hearts 
than in male hearts following I/R from our previous studies 
[81, 83, 85, 86] and the importance of mitochondrial Cx43 in 
cardiac protection [7, 11, 57, 62, 72, 93], we next determined 
myocardial levels of Cx43 between male and female. With-
out I/R there was no sex-specific difference in Cx43 expres-
sion in mouse hearts and cardiac mitochondria (Fig. 4a, 
b, S4A). However, higher levels of Cx43 were observed 
in female mouse hearts than in male hearts following I/R 
(Fig. 4c, S4B). Similarly, increased mitochondrial content of 
Cx43 was noticed in female myocardium compared to male 
myocardium after I/R (Fig. 4d, S4C), suggesting a potential 
role of mitochondrial Cx43 in sex-dependent mitochondrial 
responses. Isolated mitochondrial morphology was detected 
by TEM (Fig. 4e). The mitochondrial purity was also deter-
mined by Western blotting. The mitochondrial preparations 
were free of contamination of cytosol and other subcellular 
organelles (Fig. 4f).

Estrogen modulated Cx43 levels 
and phosphorylation in the I/R heart

Next, we determined whether endogenous or exogenous 
estrogen plays a role in mediating myocardial Cx43 expres-
sion following acute I/R. We observed that depletion of 
endogenous estrogen by OVX significantly reduced Cx43 
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expression in female heart tissue (Fig. 5a, S4D) and female 
cardiac mitochondria (Fig. 5b, S4E) after I/R, whereas post-
ischemic E2 treatment markedly increased Cx43 levels in 
heart tissue (Fig. 5c) and cardiac mitochondria (Fig. 5d, 
S4F) in OVX females following I/R. Additionally, post-
ischemic E2 usage augmented the content of Cx43 and 

Gja1-20k, a smaller isoform of Cx43, to SSM (but not IFM) 
in OVX F mouse hearts after acute I/R (Fig. 5d, S4F, S4G). 
Post-ischemic administration of E2 increased Gja-20k in 
male heart mitochondria as well (Fig. 5e, S4J). We further 
found Cx43 mostly present in the mitochondria compared 
to cytosol (Fig. S4K).

Fig. 1   Sex-dependent car-
diomyocyte mitochondrial 
responses. a Mitochondrial 
membrane potential using 
JC-1 in cardiomyocytes from 
adult male (M) and female (F) 
mouse hearts. b Mitochondrial 
superoxide production using 
MitoSOX Red in male and 
female mouse cardiomyocytes. 
c, d Changes of mitochondrial 
membrane potential and mito-
chondrial superoxide production 
in response to H2O2 (50 µM, 
1 h) in male and female mouse 
cardiomyocytes. e, f Simulated 
ischemia/reperfusion (sI/R)-
damaged mitochondrial mem-
brane potential and -induced 
mitochondrial superoxide 
production in male and female 
mouse cardiomyocytes. Twenty-
min ischemia followed by 1-h 
reperfusion (re-oxygenation) 
was used. Mean ± SEM, > 25 
cardiomyocytes/group/trial, and 
at least three trials repeated; 
results analyzed using unpaired 
t test
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Notably, Cx43 electrophoreses are multiple bands 
between 41 and 46  kDa, including a faster migrating 
form (non-phosphorylated Cx43 at around 41 kDa) and 
at least one slower migrating form (primarily phospho-
rylated Cx43 at about 45 kDa) [4, 69]. It is documented 
that the majority of Cx43 is phosphorylated in the heart 
under normal conditions [3, 4]. Ischemia results in sig-
nificant dephosphorylation of Cx43, whereas reperfu-
sion variably modulates Cx43 phosphorylation and/or 
de-phosphorylation in isolated hearts [4, 70]. Generally, 
approach to preventing dephosphorylation of Cx43 is 
cardioprotective [50]. We found an overall dephospho-
rylation of Cx43 in mouse myocardial mitochondria sub-
jected to acute I/R compared to perfusion control (Fig. 5f), 
which was consistent with previous finding on acute I/R 

dephosphorylating Cx43 in rat heart mitochondria [30]. 
Most intriguingly, higher levels of phosphorylated Cx43 
in mitochondria were observed in male and OVX female 
mouse hearts treated with E2 during reperfusion compared 
to their untreated counterparts (Fig. 5d, e, S4F, S4H). 
Also, post-ischemic E2 treatment increased Cx43 phos-
phorylation at Ser368 in OVX female heart tissue after 
I/R (Fig. 5g).

Furthermore, Immunoelectron microscopy indicated 
colloidal gold-marked Cx43 particles present in OVX F 
hearts (Fig. 6a), whereas no particles were detected in 
control preparations without the Cx43 antibody. E2 usage 
significantly increased the presence of Cx43 particles in 
OVX F heart mitochondria (Fig. 6b).

Fig. 2   Estrogen improves 
cardiomyocyte mitochondrial 
function. a 17β-estradiol 
(E2, 100 nM) preserves 
H2O2-disrupted mitochondrial 
membrane potential and reduces 
mitochondrial superoxide 
production in male mouse car-
diomyocytes. b Post-ischemic 
E2 treatment improves mito-
chondrial membrane potential 
and decreases mitochondrial 
superoxide production in male 
cardiomyocytes subjected to 
simulated ischemia/reperfusion 
(sI/R). c E2 treatment preserves 
mitochondrial membrane 
potential in female cardio-
myocytes in response to H2O2 
or sI/R. Mean ± SEM, > 25 
cardiomyocytes/group/trial 
and at least four trials were 
repeated; results analyzed using 
one-way ANOVA with multiple 
comparisons test
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Fig. 3   Post-ischemic 17β-estradiol (E2) treatment improves myo-
cardial function and reduces infarct size following acute ischemia/
reperfusion (I/R). Post-ischemic infusion of E2 improves myocar-
dial functional recovery in male (M) mouse hearts: a LVDP, b +dP/
dt, c – dP/dt, and in ovariectomized female (OVX F) mouse hearts: e 
LVDP, f +dP/dt, g – dP/dt. Representative photographs of transverse 
slices with TTC staining and infarct size comparisons between post-
ischemic E2 treatment and their untreated counterparts  in male (d) 
and OVX female (h) mouse hearts following I/R. i Infarct size com-

parison between male and female mouse hearts after I/R. j Changes 
of LVDP in stability controls of male and OVX F mouse hearts per-
fused for 85  min (n = 4/group). LVDP: left ventricular developed 
pressure = LV systolic pressure − diastolic pressure; ± dP/dt: maxi-
mum/minimum value of first derivative of LV pressure; Eq equili-
bration. Mean ± SEM, results analyzed using two-way ANOVA with 
multiple comparisons of Sidak test in a–c and e–g, unpaired t test in 
bar graphs, d, h and i, *p < 0.05, **p < 0.01, ***p < 0.001



Basic Research in Cardiology (2020) 115:1	

1 3

Page 9 of 19  1

The interaction of estrogen receptor (ER)α and Cx43 
by E2 in myocardial mitochondria

ERα is present in the plasma membrane [19, 63] and such 
localization of ERα enables the rapid action of E2 via ERα-
initiated non-genomic signaling. It has been reported that 
membrane-associated ERα is involved in regulating Cx43 
function in rat cardiomyocytes during metabolic inhibition 
[19]. Therefore, we determined mitochondrial levels of ERα 
and the potential binding of ERα/Cx43 initiated by estrogen 
treatment. Significantly enhanced ERα levels were observed 
in mitochondria of OVX F hearts with post-ischemic E2 
usage compared to their untreated counterparts following I/R 
(Fig. 7a, S4K). In addition, as shown in Fig. 7b, binding of 
Cx43 to ERα was noticed in mitochondria isolated from OVX 
F hearts following E2 treatment, indicating that Cx43 was an 
interacting partner of ERα and that using E2 increased the 
interaction of Cx43 with ERα in myocardial mitochondria.

Aggravated mitochondrial damage and impaired 
myocardial functional recovery in Cx43‑ic‑KO mice 
following acute I/R

The Cx43-null mice die shortly after birth [59]. Homozy-
gous cardiac MHC-controlled deletion of Cx43 mice show 

abnormal conduction properties starting at 2–3 weeks of 
age with sudden cardiac death, resulting in no longer than 
2 months of life [33]. A tamoxifen-inducible recombination is 
not suitable for our study due to tamoxifen interfering with the 
effect of estrogen. Therefore, we generated doxycycline-induc-
ible Tnnt2-controlled deletion of Cx43 mice (Cx43-ic-KO) in 
our study. After 10-day doxycycline-containing chow feeding, 
there was no difference in body weight (Fig. S5A) and cardiac 
function (LV ejection fraction and fractional shorting by echo-
cardiography, Fig. S5B, S5C) between male adult (16-24-week 
old) WT and Cx43-ic-KO mice. However, a change in the QRS 
shape from ECG recording was noticed in Cx43-ic-KO mice 
(Fig. S5D), which was in line with previous observation from 
cardiomyocyte-restricted deletion of Cx43 mouse line (MyHC-
Cre:Cx43flox/flox) [26]. Reduced cardiac Cx43 expression was 
detected in Cx43-ic-KO mice after 10-day doxycycline-
containing chow feeding (Fig. S5E). With Cx43 expression 
present in cardiac fibroblasts, vascular smooth muscle cells 
and endothelial cells, we did not observe complete deletion of 
Cx43 in the myocardium. Similarly, decreased Cx43 content 
in mitochondria was observed in the Cx43-ic-KO hearts (Fig. 
S5F). Immunoelectron microscopy also indicated immunogold 
dots of Cx43 within male WT heart mitochondria, whereas 
gold-marked Cx43 particles were barely detected in Cx43-ic-
KO cardiac mitochondria (Fig. 8a).

Fig. 4   Sex differences in Cx43 
expression after I/R. Cx43 
expression in male (M) and 
female (F) mouse heart lysate 
(a) and cardiac mitochondria 
(Mito) (b) without I/R. Follow-
ing acute Langendorff I/R, Cx43 
levels in male and female mouse 
heart lysate (c) and cardiac 
mitochondria (Mito) (d). Iso-
lated mitochondria from mouse 
hearts detected by transmission 
electron microscopy (e). Analy-
sis of isolated mitochondria 
and total cardiac lysates (heart) 
(f). VDAC and Cox IV are 
used as mitochondrial markers. 
Cyto: cytosol. Western blots in 
a–d show individual samples 
from one trial (other original 
Western blots shown in Fig. 
S4A, S4B and S4C). Bar graphs 
(relative density) are combined 
analysis for immunoblotting 
band intensity normalized to 
GAPDH or Cox IV, respec-
tively. Mean ± SEM, unpaired 
t test, n = 3-6/group, *p < 0.05, 
**p < 0.01
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Of note, there were no differences in terms of mitochon-
drial number and size between WT and Cx43-ic-KO mouse 
hearts without I/R (Fig. 8b–e). However, more mitochondrial 
damage (reduced number and enlarged mitochondria) for 
SSM was noticed in Cx43-ic-KO mouse hearts than in WT 
hearts following I/R (Fig. 8b, c), but not for IFM (Fig. 8d, 
e). Acute I/R caused more impairment in SSM compared to 

IFM in Cx43-ic-KO mouse heart (Fig. S6). Additionally, we 
barely detected recovery of LV function (LVDP) following 
I/R in Cx43-ic-KO hearts compared to their WT counter-
parts (Fig. 9a). Considering that not all Cx43-ic-KO hearts 
were able to catch up the paced heart rate, we also evaluated 
rate pressure product (RPP = LVDP*BPM [beats per min-
ute]) and observed similar results (Fig. 9b) as LVDP did. 

Fig. 5   The role of endogenous and exogenous estrogen in myocardial 
Cx43 expression following acute I/R. Depletion of endogenous estro-
gen by ovariectomy (OVX) reduces Cx43 levels in female (F) heart 
tissue (a) and cardiac mitochondria (Mito) (b) after myocardial I/R. 
Post-ischemic E2 infusion increases Cx43 content in OVX F heart 
tissue (c) and in cardiac subsarcolemmal mitochondria (SSM) (d) 
following I/R, as well as augmented Gja1-20k in SSM. d Cx43 and 
Gja1-20k are preferably present in SSM compared to interfibrillar 
mitochondrial (IFM). Post-ischemic E2 usage augments Gja1-20k in 
mitochondria of male hearts after acute I/R (e). d, e Higher levels of 
phosphorylated Cx43 (pCx43, upper arrow) vs. non-phosphorylated 
Cx43 (non-pCx43, lower arrow) in post-ischemic treatment with E2 

in OVX F and male mouse hearts following I/R. f De-phosphorylated 
Cx43 (lower arrow) by I/R in mitochondria compared to phosphoryl-
ated mitochondrial Cx43 (upper arrow) in mouse hearts without I/R. 
g Post-ischemic E2 infusion regulates myocardial Cx43 phosphoryla-
tion at Ser368 in OVX F hearts after I/R. Western blots in a–e show 
individual samples from one trial (other original Western blots shown 
in Fig. S4D–S4 J). Densitometry data (relative density) are analyzed 
by immunoblotting band intensity normalized to loading control–
GAPDH, Cox IV, or VDAC, respectively, and pCx43 vs. non-pCx43 
in (d) and (e). Mean ± SEM, n = 4–7/group, unpaired t test, *p < 0.05, 
**p < 0.01
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Importantly, Cx43-ic-KO abolished the protective effect of 
post-ischemic E2 treatment on myocardial function follow-
ing I/R (Fig. 9c, d), whereas improved LV functional recov-
ery was observed in WT hearts treated with post-ischemic 
E2 (Fig. 9e), suggesting the critical role of Cx43 in mediat-
ing estrogen-initiated acute cardiac protection.

Discussion

In this study, we employed a new strategy using post-
ischemic administration of estrogen instead of preventive 
usage as a potential therapeutic option for treating ischemic 
heart disease. Here, our data clearly indicated that E2 

Fig. 6   Mitochondrial Cx43 content determined by immunoelectron 
microscopy. a Representative images of immunoelectron micros-
copy show gold-marked Cx43 particles (red arrows) present in OVX 

F hearts ± E2. b Bar graph shows total number of gold–labeled Cx43 
particles in the field and number in the mitochondria. Mean ± SEM, 
unpaired t test
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protected mitochondrial performance in mouse primary 
cardiomyocytes against simulated I/R when given at the 
onset of reperfusion/re-oxygenation. More importantly, 
post-ischemic treatment of E2 significantly improved LV 
functional recovery and reduced infarct size in both male 
and endogenous estrogen-depleted female mouse hearts fol-
lowing acute myocardial I/R. This estrogen-derived acute 
cardiac protection was related to Cx43, particularly mito-
chondrial Cx43, at least in part.

It is well documented that there is the intrinsic resistance 
of isolated female hearts to post-ischemic contractile dys-
function [15, 21, 48, 81, 83, 85, 86]. Mitochondria, present 
in thousands of copies per cardiomyocyte, are critical to 
ensuring cardiomyocyte contractility and viability. Although 
information is limited, sex differences are observed in car-
diomyocyte mitochondrial function. Female heart mitochon-
dria are more resistant to calcium-induced mitochondrial 
permeability transition pore (mPTP) opening than males [56, 
61]. In addition, there is less mitochondrial H2O2 genera-
tion and lower mitochondrial oxidative damage in female rat 
hearts compared to males [22, 42, 48]. In the present study, 
our finding that less mitochondrial ROS (superoxides) were 
generated in female cardiomyocytes compared to male ones 
following H2O2 exposure or simulated I/R is consistent with 
those previous studies [22, 42, 48]. However, we did not 
observe sex differences in mitochondrial membrane potential 
in response to H2O2 or simulated I/R, suggesting that this 

important index of mitochondrial hemostasis is comparable 
between male and female cardiomyocytes following cardiac 
stress.

Accumulating evidence has indicated that Cx43 protein 
is implicated in multiple aspects of mitochondrial func-
tion including mitochondrial complex I-mediated oxygen 
consumption and ATP production [9], potassium handling 
[57], mPTP opening [71], and ROS formation [68]. Mito-
chondrial Cx43 exists in a hemichannel (HC)-like configura-
tion, which is mostly closed under physiological status and 
opened during ischemia-like conditions [50, 60]. Ischemic 
preconditioning (IPC), the sub-lethal injury, triggers small 
amounts of mitochondrial Cx43 HCs opening, thus initiating 
downstream protective pathways following I/R [50]. Reduc-
ing mitochondrial Cx43 content abolishes IPC-mediated car-
diac protection [35, 62, 66]. However, in the absence of IPC, 
mitochondrial Cx43 HCs seem to play a deleterious role 
in the heart following ischemia [28]. The excessive open-
ing of mitochondrial Cx43 HCs facilitated calcium entering 
mitochondria, leading to mitochondrial calcium overload 
and cell death, whereas pharmacological inhibition of mito-
chondrial Cx43 HCs prevented cell death in cardiomyocytes 
subjected to simulated I/R [28]. Both inhibition of Cx43 
HCs and genetic ablation of Cx43 strongly reduced infarct 
size in the heart following I/R [28]. Notably, dephosphoryla-
tion of Cx43 by ischemia contributes to Cx43 HC opening 
[50, 60]. IPC is also noticed to prevent ischemia-induced 
Cx43 dephosphorylation [50]. In this study, higher levels 
of non-phosphorylated mitochondrial Cx43 was observed 
in the heart after I/R, whereas more phosphorylated Cx43 
proteins were present in the post-ischemic E2-treated mouse 
heart mitochondria. This E2-prevented dephosphorylation 
of mitochondrial Cx43 might lead to Cx43 HCs’ remaining 
closure in mitochondria during reperfusion, thus conferring 
cardiac protection. Our data regarding increased interaction 
of ERα and Cx43 in mitochondria by estrogen also sup-
ported this hypothesis, because E2 pretreatment-activated 
ERα was found to initiate the PKC pathway, thereby prevent-
ing metabolic inhibition-induced dephosphorylation of Cx43 
in rat cardiomyocytes [19, 20].

Cx43 is primarily present in SSM [11, 72], but not in 
IFM. Our findings that post-ischemic E2 treatment aug-
mented SSM Cx43 levels in OVX F hearts were in line 
with these studies. SSM are more vulnerable to I/R injury 
compared with IFM likely due to their being less resistant 
to I/R-induced mitochondrial permeability transition and 
their higher exposure to oxygen gradient than IFM [17]. In 
this study, our results (Fig. S6) that more damaged mito-
chondria occurred in SSM compared to IFM in Cx43-ic-KO 
hearts subjected to myocardial I/R confirmed this. However, 
we noticed more severe SSM injury in Cx43-ic-KO hearts 
compared to their WT counterparts after I/R. This finding 
is in contrast to that mitochondrial Cx43-formed HCs play 

Fig. 7   The binding of Cx43 to ERα in mouse heart mitochondria by 
estrogen. a Western blotting for ERα in mitochondrial extracts from 
OVX F mouse hearts± post-ischemic E2 treatment after I/R (another 
set of original Western blots shown in Fig. S4K). Bar graph (rela-
tive density) is combined analysis for band intensity normalized to 
loading control—Cox IV or VDAC, respectively. Mean ± SEM, 
n = 6/group, unpaired t test, *p < 0.05. b Binding of Cx43 to ERα is 
observed in mitochondria isolated from OVX F mouse hearts with E2 
infusion by co-IP. Mitochondrial extracts were immunoprecipitated 
using anti-ERα antibody or control IgG (Neg. c) and blotted with 
antibodies of anti-Cx43 and anti-ERα. 5% input as positive control. 
Experiment was repeated two times (n = 4 hearts/group)
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a detrimental role during ischemia-like conditions [28]. 
Notably, the relative role of Cx43 HCs in ischemia depends 
on the duration and severity of I/R, varying from benefit at 

early injury to a later cell death accelerator in severely dam-
aged heart. The opening of mitochondrial Cx43 HCs during 
ischemia and at early reperfusion may release excessive ions 

Fig. 8   Mitochondrial damage in Cx43-ic-KO mouse hearts follow-
ing acute I/R. a Representative images of immunoelectron micros-
copy show immunogold dots of Cx43 (red arrows) within male WT 
heart mitochondria, but neither male Cx43-ic-KO heart mitochondria 
nor heart sections in the absence of primary antibody incubation. b 
Transmission electron microscopy micrographs of subsarcolemmal 
mitochondria (SSM) in male WT and male Cx43-ic-KO mouse hearts 

without or with acute I/R. c Quantification of SSM number and size. 
d Transmission electron microscopy micrographs of interfibrillar 
mitochondria (IFM) in male WT and male Cx43-ic-KO mouse hearts 
without or with acute I/R. e Quantification of IFM number and size. 
A total of > 10 fields per condition were analyzed using the Image J 
software (NIH). Mean ± SEM, unpaired t test
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or toxic by-products from mitochondria and maintain mito-
chondrial health [50, 60]. In our study, we used a 25-min 
ischemia followed by 40-min reperfusion, the course and 
degree of which was much less severe than those of the pre-
viously reported one (30-min ischemia and 120-min rep-
erfusion) [28]. This less severe I/R injury might not lead 
to excessive opening of mitochondrial Cx43 HCs and the 
adaptive opening/closure of mitochondrial Cx43 HCs could 
provide protective effect following I/R. Therefore, it was 
possible that ablation of Cx43 resulted in more severe dam-
age in SSM. In addition, our data showed that post-ischemic 
E2 treatment augmented mitochondrial Cx43 content, asso-
ciated with improved myocardial functional recovery and 
reduced infarct size, implying that mitochondrial Cx43 
might not always play a deleterious role in the inured heart. 
In fact, pharmacological inhibition of mitochondrial Cx43 
HCs significantly reduces SSM calcium retention capacity 
[71] and increases calcium-induced mPTP opening [10], 
suggesting a protective role of Cx43 HCs in SSM [50]. 
Furthermore, Cx43 has many other non-channel functions 
attributable to Cx43 c-terminus interacting with signaling 
and scaffolding proteins. Mitochondrial Cx43 has been 
shown to interact with the apoptosis-inducing factor, which 

plays a role in cell death when released into cytoplasm [25]. 
Collectively, it deserves further investigation regarding the 
role of mitochondrial Cx43 in myocardial responses to acute 
injury.

Cx43-formed gap junctions between cells and HCs at 
plasma membrane are also involved in modulating myo-
cardial responses to I/R. On the one hand, reduced Cx43 
protein or increased dephosphorylation of Cx43 leads to 
electrical cell uncoupling, thus contributing to ischemia-
induced arrhythmogenesis [4, 49]. The approach to prevent-
ing ischemia-induced Cx43 gap junction uncoupling is car-
dioprotective. On the other hand, blockade of gap junction 
uncoupling/closure has been reported to increase hypercon-
tracture spreading and cell death [29]. Pharmacological inhi-
bition of Cx43 HCs by Gap19 at plasma membrane, particu-
larly sarcolemma, improves cell survival and decreases the 
infarct size following I/R [88]. In this study, post-ischemic 
E2 treatment increased cardiac Cx43 phosphorylation at 
Ser368 (Fig. 5g), suggesting that E2 might confer protection 
partially via preserving Cx43 gap junction communication 
or blocking Cx43 HCs at plasma membrane in the heart 
against I/R. However, the detailed mechanism underlying 
how E2 acts on Cx43 gap junctions and sarcolemmal Cx43 

Fig. 9   Ablation of cardiac Cx43 abolishes E2-induced protection for 
myocardial function following acute I/R. a, b LVDP and RPP in male 
WT and Cx43-ic-KO mouse hearts following I/R. c, d LVDP and 
RPP in male Cx43-ic-KO mouse hearts without or with post-ischemic 

E2 treatment. e LVDP in male WT mouse hearts ± E2 treatment start-
ing at the onset of reperfusion. Mean ± SEM, n = 4–5/group, unpaired 
t test, *p < 0.05, **p < 0.01, ****p < 0.0001
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HCs, as well as mitochondrial Cx43 HCs, requires further 
investigation, particularly considering that the cardiac pro-
tective effect provided by ZP1609 (Gap134 or danegaptide) 
could be due to its modulation of Cx43 gap junctions or sar-
colemmal Cx43, but independent of mitochondrial Cx43 [6].

Smaller isoforms of Cx43 C-terminus have been shown 
to play an important role in regulating Cx43 function [27, 
67]. Overexpression of Gja1-20k is sufficient to rescue mito-
chondrial localization/organization during oxidative stress 
[27]. Exogenous Gja1-20k delivery improves mitochon-
drial biogenesis and metabolic quiescence, thus protecting 
myocardium from ischemic and I/R injury [2]. In this study, 
augmented mitochondrial Gja1-20k was noticed in post-
ischemic E2-treated mouse hearts after I/R. Therefore, it is 
possible that the increased mitochondrial Gja1-20k could 
mediate estrogen-induced mitochondrial protection against 
myocardial I/R as well.

Interestingly, we found higher levels of overall and mito-
chondrial Cx43 content in E2-treated mouse hearts (40-min 
treatment) compared to their untreated counterparts follow-
ing I/R. Although estrogen could increase Cx43 expression 
via directly binding to its promoter region [94], our data 
(Fig. S3) did not support estrogen-regulated Cx43 expres-
sion at a transcriptional level in the current study. Notably, 
there is a rapid turnover of Cx43 with its half-life as short 
as 1–2 h in the heart [3]. Estrogen/estrogen receptor has 
been implicated in reducing Cx43 ubiquitination in breast 
cancers [78]. In this regard, increased Cx43 levels might be 
due to estrogen-decreased degradation of myocardial Cx43 
during I/R.

There is an inconsistent finding that female hearts are not 
protected against I/R injury [52]. In this paper, Lieder et al. 
showed similar myocardial functional recovery and infarct 
size in female Lewis rat hearts and male counterparts after 
acute I/R. It is noted that different rat strains (Sprague–Daw-
ley [48, 81, 86] and Wister [21] vs. Lewis) were employed 
in those studies which demonstrated cardiac protection 
in female hearts compared to male hearts in response to 
I/R. Given that genetic background is one of major fac-
tors impacting on myocardial infarct size [32], inconsistent 
results from Lieder et al. might be attributable to a differ-
ent rat strain/genetic background used in their study. Also, 
female animals in different stages of estrus cycle could be 
another potential reason for the inconsistent finding. In the 
present study, a difference in LVDP and dP/dt under base-
line condition was observed between male and OVX female 
hearts with reduced myocardial function in OVX female. 
Decreased cardiac function has been reported in the OVX 
mice from other groups as well [89, 91]. One explanation 
for this is likely due to depletion of endogenous estrogen 
by OVX affecting calcium transients, excitation–contrac-
tion coupling gain, and sarcoplasmic reticulum content in 
cardiomyocytes [58].

In conclusion, we have shown that post-ischemic E2 treat-
ment protects mitochondrial performance in cardiomyocytes 
against simulated I/R in culture, improves myocardial func-
tional recovery and reduces the infarct size following acute 
I/R. The protective effect of E2 likely occurs at multiple 
aspects involving Cx43: inhibition of mitochondrial Cx43 
HCs, modulation of mitochondrial Cx43 content, augmen-
tation of mitochondrial Gja1-20k, preventing gap junc-
tion uncoupling or blockade of Cx43 HCs at the plasma 
membrane.
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