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ABSTRACT. Oxidation-reduction (redox) based regulation of signal transduction and gene expression is
emerging as a fundamental regulatory mechanism in cell biology. Electron flow through side chain functional
CH,-SH groups of conserved cysteinyl residues in proteins account for their redox-sensing properties. Because
in most intracellular proteins thiol groups are strongly “buffered” against oxidation by the highly reduced
environment inside the cell, only accessible protein thiol groups with high thiol-disulfide oxidation potentials
are likely to be redox sensitive. The list of redox-sensitive signal transduction pathways is steadily growing, and
current information suggests that manipulation of the cell redox state may prove to be an important strategy for
the management of AIDS and some forms of cancer. The endogenous thioredoxin and glutathione systems are
of central importance in redox signaling. Among the thiol agents tested for their efficacy to modulate cellular
redox status, N-acetyl-L-cysteine (NAC) and a-lipoic acid hold promise for clinical use. A unique advantage of
lipoate is that it is able to utilize cellular reducing equivalents, and thus it harnesses the metabolic power of the
cell to continuously regenerate its reductive vicinal dithiol form. Because lipoate can be readily recycled in the
cell, it has an advantage over N-acetyl-L-cysteine on a concentration:effect basis. Our current knowledge of
redox regulated signal transduction has led to the unfolding of the remarkable therapeutic potential of cellular
thiol modulating agents. BIOCHEM PHARMACOL 55;11:1747-1758, 1998. © 1998 Elsevier Science Inc.
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Recent works from several laboratories have led to the REDOX SENSOR PROTEINS

unfolding of one of the most exciting areas in biomedical Low levels of ROS+ are generated as an integral component

of normal cellular function. Under certain conditions, e.g.
the presence of elevated concentrations of transition metal
(Fe/Cu) ions, drug metabolism, or ischemia—reperfusion,

research—antioxidant and redox regulation of molecular
biology. In contrast to the conventional idea that reactive
oxygen is mostly a trigger for oxidative damage of biological

structures, we now know that a low, physiological concen- ROS generation is exaggerated to an extent that over-
tration of reactive oxygen species can regulate a variety of whelms cellular antioxidant defenses. The result is oxida-
key molecular mechanisms that may be linked with impor- tive stress. Oxidative stress has been characterized by the
tant processes such as immune response, cell-cell adhesion, assessment of oxidative damage to cellular components, e.g.
cell proliferation, inflammation, metabolism, aging, and protein, lipid, and nucleic acid. It is now clear, however,
cell death. Oxidation-reduction (redox) based regulation of that several biological molecules that are critically impor-
gene expression appears to be a fundamental regulatory tant in cell signaling and in the regulation of gene expres-
mechanism in cell biology. The primary objective of this sion are sensitive to ROS at a concentration much below
work is to present an overview of our current understanding that required to inflict oxidative damage. Thus, much of
of redox-regulated molecular biology and to explore, in the current focus has been directed towards the understand-
light of that knowledge, the emerging potential of thiol ing of “redox sensors” in biology. A list of redox-sensitive
antioxidants. molecular targets is presented in Table 1.

Several proteins, with apparent redox-sensing activity,
have been described. Electron flow through side chain
functional CH,-SH groups of conserved cysteinyl residues
in these proteins account for the redox-sensing properties.
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TABLE 1. Redox-sensitive molecular targets

C. K. Sen

Redox-sensitive target Characteristics/Function Reference
Transcription factors
NF-kB Viral (HIV) activation, cell adhesion, NO synthesis, cytokine release, [1-3]
inflammation, pathogen response
AP-1 Cell proliferation, cell adhesion, GST regulation, multidrug resistance [1, 3]
Elk-1 Serum response element induction, c-fos expression, cell proliferation, (4]
Ras-signaling
Egr Osteoblast growth, herpes simplex viral activation, tumorigenesis, [5, 6]
radiosensitivity
PEBP2 Osteogenesis, muscle differentiation, T cell receptor gene arrangement, [7, 8]
myeloperoxidase gene regulation
Sp-1 HIV, herpes simplex activation, myocyte differentiation, VEGF, hsp70 [9]
and HGH gene regulation
NE-AT IL-2 expression, IL-4 transcription, Ca’*" signaling, T cell activation [10]
NF-Y Hepatitis B viral activation, multidrug resistance, aldehyde dehydrogenase [11]
2, and FAS gene regulation
HIF-1 Hypoxia-induced gene expression, transferrin expression, angiogenesis, [12]
tumor growth, NO synthesis
HSF Heat-shock protein expression [13]
Ah receptor/Arnt Xenobiotic/pollutant response, HIF response, CYP1A1 regulation [14]
GABP Expression of nuclear encoded mitochondrial proteins involved in [15]
oxidative phosphorylation
TTF-1 Thyroglobulin and thyroperoxidase expression, epithelial cell gene [16]
expression in lung
PAX-8 Thyroglobulin and thyroperoxidase expression, tissue morphogenesis, [16]
neural cell adhesion, tumorigenesis
Antioxidant
Thiol:disulfide oxidoreductases For example, glutaredoxin, GSSG reductase, thioredoxin and thioredoxin [17, 18]
reductase. Participate in the regulation of several redox-sensitive
signaling processes, reactive oxygen scavenging, and oxidative damage
repair
Glutathione peroxidase Glutathione-dependent detoxification of peroxides [19]
Mn-SOD Dismutation of superoxide anion radicals in the mitochondria [20]
Calcium metabolism
Mitochondrial permeability transition Regulation of cytosolic [Ca®*] [21]
Adenylyl cyclase cAMP/protein kinase A pathway, G protein effect, ion transport and [22]
hypertension, NO synthesis
Ryanodine receptor Ryanodine binding Ca®* release channels [23]
L-Type calcium channel Voltage dependent, form highly selective pores for Ca?* in the [24]
membranes of excitable cells
Other ion transporters
Small Cl™ channel Gating of Ca*"-dependent Cl~ channel in skeletal muscle [25]
K* influx Skeletal muscle irritability, fatigue [26]
Cytokines
TNF Lymphokine with tumor necrosis activity, ROS production, programmed [27]
cell death
IL-1, -2, -6, -8 Cell proliferation, programmed cell death, T cell differentiation, [27, 28]
inflammation
TGFB Injury response, wound healing, cell proliferation, osteogenesis, regulation [29]
of differentiation
Cell growth-related genes
p2l Cell cycle, terminal differentiation, programmed cell death, Ras/G [30, 31]
protein signaling
Ras-signaling Superoxide intermediate identified to be implicated in cell proliferation [32]
Kinase
JNK/SAPK MAPK-related protein kinases, cell growth and differentiation, [33, 34]
programmed cell death, DNA repair
BMK1 or ERK5 H,0O,-sensitive MAPK, activated by MEK5 [35]

(continued)
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TABLE 1 (continued)
Redox-sensitive target Characteristics/Function Reference
p44 MAPK/ERK1/ERK2 Aortic smooth muscle cell proliferation, CREB phosphorylation, Na™/H™ [36-39]
exchanger regulation
CDK Cell cycle progression [40]
P56k Protein tyrosine phosphorylation, T cell receptor mediated signaling [41]
Phosphatase
Tyrosine phosphatase Protein phosphotyrosine dephosphorylation [42]
Other proteins
IRP1/IRP2 Cytosolic RNA-binding proteins that bind to specific stem-loop structures [43-45]
termed iron-responsive elements, sensor of oxygen and iron levels
Glucocorticoid hormone Endocrine function [46]
GLUT Glucose transport [47]
NMDA receptor Neuronal ion transport [48-51]
Heme oxygenase Catalyzes rate-limiting step of heme catabolism producing bilirubin and [52]
biliverdin, heat-shock protein
Hsp 70 Stress protein with possible antioxidant and other defense functions [53]
Aconitase Sensor of steady-state O, levels occurring in living cells and [54]

mitochondria under stress conditions

Abbreviations: Ah, aryl hydrocarbon; Arnt, Ah receptor nuclear translocator; AP, activator protein; BMK, big mitogen-activated protein kinase; CDK, cyclin-dependent kinase;
CREB, cAMP regulatory element binding protein; CYP, cytochrome P450; egr, early growth response; ERK, extracellular signal-regulated kinases; FAS, fatty acid synthase; GABP,
GA (purine-rich-repeat) binding protein, also known as nuclear respiratory factor 2; GLUT, glucose transporter; GSSG, glutathione disulfide; HGH, human growth hormone;
HIF-1, hypoxia inducible factor 1; HSF, heat-shock factor; Hsp, heat-shock protein; IL, interleukin; IRP, iron-responsive-element-binding protein; JNK, c-Jun NH,-terminal
kinase; MAPK, mitogen-activated protein kinase; MEK, MAP kinase kinases; NF-AT, nuclear factor of activated T cells; NF-kB, nuclear factor-kB; NF-Y, sequence-specific
DNA-binding protein (nuclear factor) that interacts with the conserved Y motif or Y box of the major histocompatibility complex class Il gene, E alpha; NMDA,
N-methyl-D-aspartate; PAX, thyroid-enriched proteins with paired-box domains for DNA interaction; PEBP2, polyomavirus enhancer binding protein 2; ROS, reactive oxygen
species; SOD, superoxide dismutase; SAPK, stress-activated protein kinase; Sp-1, promoter (simian virus 40) specific factor; TGF, transforming growth factor; TNF, tumor necrosis
factor, TTF, thyroid specific transcription factor; and VEGF, vascular endothelial growth factor. Selected literature demonstrating redox sensitivity is cited.

From in vitro information presented thus far, this mecha-
nism appears to account for most of the major redox-driven
signal transduction. It has been shown that formation of
protein-disulfide bonds following oxidant challenge may
lead to protein destabilization and exposure of hydrophobic
domains. Such changes have been suggested to signal for
oxidative stress-induced heat shock response [53]. Most
intracellular protein thiol groups are strongly “buffered”
against oxidation by the highly reduced environment inside
the cell mediated by high amounts of glutathione, thiore-
doxin, and associated systems. Thus, only accessible protein
thiol groups with high thiol-disulfide oxidation potentials
are likely to be redox sensitive. A well-characterized redox-
sensitive step in the regulation of AP-1 transcription factor
is the DNA binding of Fos and Jun proteins [55]. Fos and
Jun DNA binding in wvitro is regulated by the reduction-
oxidation of a single conserved cysteine residue (Lys-Cys-
Arg) in the DNA-binding domains of the two proteins. The
requirement of a single cysteine residue and the sensitivity
of Fos and Jun proteins to the -SH alkylating agent
N-ethylmaleimide exclude the possibility that oxidation of
the cysteine residue involves intra- and intermolecular
disulfide bond formation. It has been suggested that con-
version of the cysteine to reversible oxidation products such
as sulfenic (RSOH) or sulfinic (RSO,H) acids could con-
tribute to the regulation of DNA binding [55]. Replace-
ment of the critical cysteine residue of a truncated Fos
protein by serine resulted in a three-fold increase in AP-1
DNA binding activity that was no longer redox regulated.

Such observations indicate that redox regulation of AP-1
DNA binding limits the total level of Fos-Jun in vivo and
that escape from this control enhances transforming activ-
ity [56].

In NF-kB proteins, the highly conserved Rel homology
domain is responsible for DNA binding. A short stretch of
amino acids (the RXXRXRXXC motif, R = arginine, C =
cysteine, X = other amino acid) at the beginning of the
domain is essential to contact DNA directly [57-59]. The
cysteine residue in the motif is critical and must be
maintained in a reduced state to allow DNA binding
because oxidation of this cysteine residue interferes with
DNA binding of NF-kB [57-61]. The 128-amino acid long,
evolutionarily conserved Runt domain of the alpha subunit
of the transcription factor PEBP2/CBF is responsible for
both DNA binding as well as heterodimerization with the
regulatory subunit beta. The Runt domain contains two
conserved cysteinyl residues, Cys-115 and Cys-124, that
confer redox sensitivity to DNA binding of the proteins.
Substitution of Cys-115 by serine partially impaired DNA
binding. Substitution of Cys-124, however, increased DNA
binding. Thus, it was evident that both cysteine residues
were responsible for the redox regulation in their own way
[8]. Recently, a molecular redox switch has been identified
on p2l (ras) [31]. The Cys-118 residue containing a
fragment of p21 was observed to be the critical site of redox
regulation. S-Nitrosylation of this residue triggers guanine
nucleotide exchange and downstream signaling [31].

Thiol:disulfide oxidoreductases, e.g. glutaredoxin, GSSG
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reductase, thioredoxin, and thioredoxin reductase have
active dithiol moieties and are known to play a central role
in redox-sensitive signal transduction. These enzymes also
provide a primary defense mechanism for protection and
repair of protein sulthydryls in an oxidative stress situation.
An active-site CXXC motif of such oxidoreductases has
been observed to be essential for their catalysis of redox
reactions [17]. The rapid formation of native disulfide
bonds in cellular proteins, necessary for the efficient use of
cellular resources, is catalyzed in vitro by PDI. The signifi-
cance of this enzyme is clearly evident in Saccharomyces
cerevisiae in which the PDII gene is essential for survival. It
has been observed that the presence of the CXXC motif is
essential for the formation of native disulfide bonds in the
cell [62]. Amino acid oxidation-dependent redox sensitiv-
ity also has been postulated for the release and activity of
TGF beta-1 (TGFB). TGFB is a multifunctional cytokine
that orchestrates response to injury via ubiquitous cell
surface receptors. The cytokine is secreted as a biologically
inactive complex. Oxidation of specific amino acids in the
latency-conferring peptide has been suggested to lead to a
conformational change in the latent complex that allows
the release and biological activity of TGFB [29].

Both in witro and in vivo evidence show that zinc-finger
DNA-binding proteins, e.g. members of the Sp-1 family, are
redox sensitive. An Sp-1 site-mediated hyperoxidative
repression of transcription from promoters with essential
Sp-1 binding sites, including simian virus 40 early region
glycolytic enzyme, and dihydrofolate reductase genes, has
been observed [9]. Binding of the transcription factor Egr-1
to its specific DNA-binding sequence GCGGGGGCG
occurs through the interaction of three zinc finger motifs
with demonstrated redox sensitivity [5, 6]. Proteins with
iron—sulfur prosthetic groups have been identified to have
remarkable redox-sensing properties. The assembly and
disassembly of [4Fe-4S] clusters is the key to redox sensing
in these proteins [43]. The Fe-S containing proteins acquire
their clusters by post-translational assembly under the
direction of L-cysteine/cystine C-S-lyase activity [63].

Oxidative stress-induced tyrosine phosphorylation has
been ascribed to the activation of phosphotyrosine kinase
or to inhibition of phosphotyrosine phosphatase. Reactive
cysteinyl residues in the active site of protein-tyrosine
phosphatases confer oxidant sensitivity to the activity of
these enzymes [64]. This family of enzymes feature an
essential nucleophilic thiol group that attacks the phospho-
rus atom in a substrate. The nucleophilic attack by Cys-12
in low molecular weight phosphotyrosine phosphatase is
carried out by a thiolate anion form of this residue [65]. It
has been shown that a single S to O atom substitution in
the nucleophile, via Cys to Ser mutation, results in struc-
tural/conformational and functional changes that render
phosphotyrosine phosphatases catalytically inactive [66]. In
vitro studies [67—69] show that comparable to vanadate,
hydrogen peroxide selectively inhibits phosphotyrosine
phosphatase activity. Treatment of erythrocytes with the
thiol-oxidizing agent diamide has been shown to lead to the
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formation of phosphotyrosine phosphatase disulfides [42].
Such inactivation of the enzyme inhibits dephosphoryla-
tion and results in the accumulation of phosphorylated
protein tyrosine [64].

Ca’*-driven protein phosphorylation and proteolytic
processing of proteins are two major intracellular events
that are implicated in signal transduction from the cell
surface to the nucleus. Intracellular calcium homeostasis is
regulated by the redox state of cellular thiols [70]. For
example, the calcium release channel/ryanodine receptor
complex of skeletal muscle sarcoplasmic reticulum has been
shown to contain reactive thiols that are sensitive to
glutathione [23]. In addition, the presence of an allosteric
thiol-containing redox switch on the L-type calcium chan-
nel subunit complex has been indicated [24]. Thus, changes
in the cellular thiol redox state are expected to influence
calcium-sensitive signaling processes [2, 3, 24, 71].

THE KEY PLAYERS IN REDOX REGULATION

The ubiquitous endogenous thiols thioredoxin and gluta-
thione are of central importance in redox signaling [72, 73].

The Thioredoxin System

Thioredoxin is a pleiotropic NADPH-dependent disulfide
oxidoreductase that catalyzes the reduction of exposed
protein S—S bridges. Because of its dithiol/disulfide ex-
change activity, thioredoxin determines the oxidation state
of protein thiols. This small (~12 kDa) protein is evolu-
tionarily conserved between prokaryotes and eukaryotes
from yeast to animals and plants. A characteristic feature of
most thioredoxins is the presence of a conserved catalytic
site Trp-Cys-Gly-Pro-Cys-Lys in a protrusion of the three-
dimensional structure of the protein. The two cysteine
residues of the site can be reversibly oxidized to form a
disulfide bridge and, thereafter, be reduced by action of the
selenoenzyme thioredoxin reductase in the presence of
NADPH {NADPH + H* + thioredoxin-S, —NADP* +
thioredoxin-(SH),}. Thioredoxin reductase activity is de-
creased by selenium deficiency [74]. Thioredoxin reductase
from human placenta reacts with only a single molecule of
NADPH, which leads to a stable intermediate similar to
that observed in titrations of lipoamide dehydrogenase or
glutathione reductase. Experiments related to the titration
of thioredoxin reductase from human placenta with dithio-
nite suggested that the penultimate selenocysteine of the
protein is in redox communication with the active site
disulfide/dithiol [75]. In addition to the two active site
cysteine residues indicated above, two or three additional
structural cysteine residues exist in the C-terminal half of
the thioredoxin molecule. Oxidation of these residues
results in a loss of the enzymatic activity of thioredoxin
[76].

Thioredoxin peroxidase is a cytosolic protein that cata-
lyzes the conversion of hydroperoxide and alkyl hydroper-
oxides into water and corresponding alcohols. Originally,
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thioredoxin peroxidase was identified as thiol-specific an-
tioxidant or protector protein from yeast [77]. During the
course of antioxidant protection, thiols (RSH) react with
free radical species (A®) to neutralize (AH) the radical. As
a result of such reaction, thiyl radicals (RS®) are generated.
Thiyl radicals are capable of triggering oxidative damage to
biological macromolecules, e.g. lipids and DNA. It appears
that thioredoxin peroxidase detoxifies thiyl radicals or
oxidized thiyl radical anions [78]. Antioxidant properties of
thioredoxin peroxidase also include the removal of hydro-
gen peroxide by the overall reaction: 2 RSH + H,0, —
RSSR + H,O [79].

Mammalian thioredoxin [80] acts as a hydrogen donor
for ribonucleotide reductase [81] and methionine sulfoxide
reductase, facilitates refolding of disulfide containing pro-
teins [82], activates glucocorticoid or interleukin-2 recep-
tors [83, 84], and activates partially folded malate dehydro-
genase [85]. Thioredoxin also has been shown to regulate
the DNA binding activity of some transcription factors
either directly, as for TFIIIC, BZLF1, and NF-«B [61, 86,
87], or indirectly as for the DNA binding of AP-1 proteins.
Reduction of a single conserved cysteine residue, located in
the DNA-binding domain of AP-1 proteins, by Ref-1,
which in turn is reduced by thioredoxin, is required for
AP-1 DNA binding activity [55]. A recent report shows
that during the course of phorbol 12-myristate 13-acetate-
induced activation of AP-1, thioredoxin is efficiently trans-
located into the HelLa cell nucleus where Ref-1 is located.
This process seemed to be essential for AP-1 activation by
redox modification because co-overexpression of thiore-
doxin and Ref-1 in COS-7 cells potentiated AP-1 activity
only after thioredoxin was transported into the nucleus in
response to phorbol 12-myristate 13-acetate treatment. It
has been directly shown that thioredoxin can physically
associate with Ref-1 in the nucleus [88]. Translocation of
thioredoxin molecules from the cytoplasm to the nucleus
also has been observed in response to oxidative stress
conditions [89], e.g. ultraviolet irradiation [90]. Such trans-
location response suggests a possible role of thioredoxin in
sensing and transducing oxidative stress signals [1].

Thioredoxin, secreted by cells using a leaderless pathway
[91-93], stimulates the proliferation of lymphoid cells,
fibroblasts, and a variety of human solid tumor cell lines
[94-97]. It appears to function as an autocrine growth
factor for human lymphoid cells immortalized by the
human T-lymphotrophic virus type I or the Epstein-Barr
virus. This proliferative effect of thioredoxin involves the
activation of protein kinase C through its translocation to
the membrane [98]. Active site cysteine replacement stud-
ies show that the redox active form of thioredoxin is
necessary for eliciting growth stimulation [95]. Treatment
of several cell types with thioredoxin strongly enhances the
expression of various cytokines. Thioredoxin augments the
phorbol ester-induced expression of cytokines, e.g. TNF,
IL-1, IL-8, IL-2 and IL-2 specific transcripts. The synthesis
of IL-6 is also increased by thioredoxin in a dose-dependent
manner. Thus, cytokine synthesis appears to be tightly
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controlled by redox-dependent processes. As thioredoxin is
readily secreted and taken up by cells, it may play an
important role as a co-stimulatory molecule involved in
immune processes [27].

Thioredoxin also has been identified as an essential
component of the early pregnancy factor [99], and it is
known to inhibit human immunodeficiency virus expres-
sion in macrophages [100]. Antioxidant properties of thi-
oredoxin include removal of hydrogen peroxide [101], free
radical scavenging [102], and protection of cells against
oxidative stress [89, 103]. Recycling of ascorbate from its
oxidized forms is essential to maintain stores of the vitamin
in human cells. Previous works have shown that reduction
of dehydroascorbate to ascorbate is largely GSH dependent.
Recently, it has been demonstrated that the selenium-
dependent thioredoxin reductase system might contribute
to ascorbate regeneration. It has been observed that purified
rat liver thioredoxin reductase functions as an NADPH-
dependent dehydroascorbate reductase. GSH-dependent
dehydroascorbate reductase activity in liver cytosol was
variable, but typically 2- to 3-fold that of NADPH-depen-
dent activity [104]. The thioredoxin system can reduce
dehydroascorbate and thus may be counted in as a signifi-
cant component of the antioxidant defense network [105].
Under conditions of L-cystine and glutathione depletion,
the antioxidant defenses of lymphoid cells are impaired.
This results in apoptosis, most likely via an oxidant-
dependent mechanism. Thioredoxin has been observed to
be protective under such conditions, perhaps by virtue of its
antioxidant properties [106]. UVB radiation is known to
induce the generation of reactive oxygen species in the
skin. Thioredoxin has been shown to be efficiently pro-
duced in, and released from, cultured normal human kera-
tinocytes after UVB irradiation. Thioredoxin released from
UVB-irradiated keratinocytes acts as a survival factor for
both keratinocytes and melanocytes but does not prevent
UV-induced melanocyte death. Furthermore, it has been
suggested that thioredoxin may work as one of the stimu-
latory factors for UVB-induced melanogenesis [107]. When
stored in the absence of reducing agents, human recombi-
nant thioredoxin undergoes spontaneous oxidation, losing
its ability to stimulate cell growth, but is still a substrate for
NADPH-dependent reduction by human thioredoxin re-
ductase. There is a slower spontaneous conversion of
thioredoxin to a homodimer that is not a substrate for
reduction by thioredoxin reductase and that does not
stimulate cell proliferation. Both conversions can be in-
duced by chemical oxidants and are reversible by treatment
with the thiol reducing agent dithiothreitol [108].

Interaction of NO generated in cells with thiols results in
the formation of nitrosothiols. The NO-generating enzyme
NO synthase itself is a target of such NO-dependent
modification. Interaction of NO with vicinal dithiols in the
regulatory domain of NO synthase protein is responsible for
post-translational reduction of its catalytic activity. Thiore-
doxin has been observed to be able to reverse such
NO-dependent functional inactivation of NO synthase
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[109]. In activated human neutrophils, a burst of NO
converts intracellular GSH to GSNO, which is subse-
quently cleaved to restore GSH by an unknown mecha-
nism. It has been observed recently that GSNO is an
NADPH-oxidizing substrate for human or calf thymus
thioredoxin reductase. Addition of human thioredoxin
stimulated the initial NADPH oxidation rate several-fold
but was accompanied by progressive inactivation of thiore-
doxin reductase. It has been evident that thioredoxin
facilitates a homolytic cleavage mechanism of GSNO,
giving rise to GSH and NO [110]. This ability of the
thioredoxin system to process nitrosothiols suggests novel
mechanisms for redox signaling.

The Glutathione System

Glutathione has emerged to be one of the most fascinating
endogenous molecules present in all animal cells, often in
quite high (millimolar) concentrations. It is known to have
multifaceted physiological functions including antioxidant
defense, detoxification of electrophilic xenobiotics, modu-
lation of redox-regulated signal transduction, storage and
transport of cysteine, regulation of cell proliferation, syn-
thesis of deoxyribonucleotides, regulation of immune re-
sponse, and regulation of leukotriene and prostaglandin
metabolism. A key mechanism that accounts for much of
the metabolic and cell regulatory properties of glutathione
is thiol-disulfide exchange equilibria. The function of
several physiological proteins, including enzymes and sig-
naling molecules, is regulated by thiol-disulfide exchange
between protein thiols and low molecular weight disulfides.
Thus, the side chain sulfhydryl (—SH) residue in cysteine
of glutathione accounts for most of its physiological prop-
erties. It has been suggested that the secretion of low
molecular weight thiols, e.g. cysteine and glutathione, from
the endoplasmic reticulum might link disulfide bond for-
mation in the organelle to intra- and intercellular redox
signaling [111]. Protein folding in the endoplasmic reticu-
lum often involves the formation of disulfide bonds. The
oxidizing conditions required within the endoplasmic retic-
ulum is maintained through the release of small thiols,
mainly cysteine and glutathione [111].

The antioxidant function of GSH is implicated through
two general mechanisms of reaction with reactive oxygen
species: direct or spontaneous, and glutathione peroxidase
catalyzed. As a major by-product of such reactions, GSSG
is produced. Intracellular GSSG thus formed may be
reduced back to GSH by glutathione reductase activity or
released to the extracellular compartment. At low levels of
cytosolic GSSG, T-cells fail to activate NF-kB in response
to certain stimuli, whereas a high GSSG concentration
inhibits the binding of activated NF-kB to its cognate
DNA site. Thus, it appears that an intermediate optimal
level of intracellular GSSG is required for effective NF-kB
activation [72]. Droge et al. [72] have found that GSH
deficiency of T-cells is associated with a suppression of
NF-kB function. Such GSH deficiency-dependent NF-kB
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response is observed in certain NF-kB activation systems.
For example, suppression of hydrogen peroxide-dependent
NF-kB activation has been observed consistently in GSH-
deficient cells [3, 112]. This effect is perhaps related to very
low levels of GSSG in GSH-deficient cells. Studies with
myoblasts show, however, that GSSG may participate in,
but is not required for, TNFa-induced NF-kB activation. In
contrast to the response of NF-kB to hydrogen peroxide,
TNFa-induced NF-kB activation is potentiated in GSH-
deficient cells [113]. Intracellular GSH also has been
suggested to be of importance in the transcriptional acti-
vation of AP-1 and Egr-1 by a redox-dependent mechanism
[114]. A role of intracellular GSH in the expression of the
oncoprotein c-jun, an AP-1 family member, has been
demonstrated recently [115]. Cellular GSH depletion is
accompanied by decreased cell proliferation. One critical
intermediate of the mitogenic cascade that appears to be
sensitive to cell GSH is the function of platelet-derived
growth-factor-receptor. Autophosphorylation of this recep-
tor has been shown to be severely impaired at low gluta-
thione levels in the cell [116]. Thiol-groups confer redox-
susceptibility to the zinc-finger transcription factor Spl,
and this redox-susceptibility is prevented by DNA binding
and depends on zinc coordination of the protein. It has
been shown that DNA binding of apo-Spl, but not of the
holo-protein, is decreased markedly in the presence of
GSH/GSSG ratios within the physiological range [117].

The involvement of intracellular Ca** in oxidant-in-
duced NF-kB activation in T cells has been reported [2].
Because cell calcium response is known to be sensitive to
thiol agents, this could be one mechanism by which thiols
may modulate NF-kB activation [2, 3] or adenylyl cyclase
activation [22]. In other experimental systems, the activity
of the capacitative Ca*" influx channel has been found to
be sensitive to thiol reagents formed endogenously within
the cell. Cytosolic GSSG, produced within the endothelial
cell, has been shown to decrease luminal Ca?" content of
Ins(1,4,5)P;-sensitive Ca*" stores. Depletion of internal
Ca’* stores by GSSG may represent a mechanism by which
some forms of oxidant stress inhibit signal transduction in
the vascular tissue [118].

The activation of JNK/SAPKSs is a characteristic feature
of stress response in several experimental systems. It has
been identified recently that the intracellular GSH level
plays a central role in the JNK/SAPK activation cascade.
Elevation of the cellular GSH level inhibited, whereas
depletion of the cellular GSH pool potentiated, induction
of JNK/SAPK activity in response to an appropriate stim-
ulus [119]. The synthesis of a number of heat-shock proteins
is induced in response to various forms of environmental
stress. The resultant induction of heat-shock protein gene
transcription is brought about by the activation of specific
transcription factors termed heat-shock factors that exist in
a latent form in nonstressed cells. Depletion of cellular
GSH or protein thiol oxidation triggers the activation of
heat-shock factor [13]. Heme catabolic processes produce
the antioxidants biliverdin and bilirubin, as well as the
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potent prooxidant free iron. Since these products have
opposing effects on oxidative stress, it is not clear whether
heme catabolism promotes or inhibits inflammatory pro-
cesses, including atherosclerotic lesion formation. Heme
oxygenase, a member of the heat-shock protein family,
catalyzes the rate-limiting step of heme catabolism. Endog-
enous glutathione levels in fibroblasts modulate both con-
stitutive and UVA radiation/hydrogen peroxide-inducible
expression of the human heme oxygenase gene [52]. Ex-
pression of inducible heme oxygenase under GSH-deficient
conditions has been proposed to involve the activation of

AP-1 (Jun/Jun) binding [120].

MANIPULATION OF THE CELL
REDOX STATUS

Among the several thiol agents tested for their efficacy to
modulate cellular redox status, NAC and a-lipoic acid hold
the most promise for clinical use [121, 122]. Some funda-
mental criteria that such drugs should satisfy for clinical use
are: a) safety, i.e. nontoxic in humans; b) elevate cell GSH;
and c) favorably modulate molecular responses that are
implicated in disease pathogenesis, e.g. inhibition of NF-kB
in HIV infection. Both NAC and lipoate meet the above-
mentioned criteria.

A common limiting factor in GSH synthesis is the
bio-availability of cysteine inside the cell. In the extracel-
lular compartment, 90% of cysteine is estimated to be
present as oxidized cystine [72]. In tissue culture media, all
of cysteine is present as cystine. Cells such as T lympho-
cytes have a weak membrane x_ transport system for
cystine. However, the cysteine transporting ASC system is
estimated to be ten times more efficient than x_. Thus,
delivery of the amino acid in its reduced form outside the
cell should facilitate the availability of this GSH precursor
inside the cell. Both NAC and lipoate facilitate cysteine
delivery to the cell in their own unique ways [121].

Cysteine per se is highly unstable in its reduced form. As
a result, considerable research has been focused on alterna-
tive strategies for cysteine delivery. In the N-acetylated
form, i.e. NAC, the redox state of cysteine is markedly
stabilized. After free NAC enters a cell, it is rapidly
hydrolyzed to release cysteine. NAC, but not N-acetyl-D-
cysteine or the oxidized disulfide form of NAC, is deacety-
lated in several tissues to release cysteine [121]. Lipoate
functions as the prosthetic group for several redox reactions
catalyzed by cellular a-keto-acid-dehydrogenases such as
the pyruvate dehydrogenase complex. When administered
to cells, lipoate is reduced rapidly to dihydrolipoate and
released outside the cell. Members of the pyridine nucle-
otide-disulfide oxidoreductase family of dimeric flavoen-
zymes, e.g. lipoamide dehydrogenase, thioredoxin reduc-
tase, and glutathione reductase, reduce intracellular lipoate
to dihydrolipoate in the presence of the cellular reducing
equivalents NADH or NADPH. Thus, a unique advantage
of lipoate is that it is able to utilize cellular reducing
equivalents, and thus harnesses the metabolic power of the
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cell to continuously regenerate its reductive vicinal dithiol
form. Because of such a recycling mechanism, the lipoate-
dihydrolipoate couple can be maintained continuously in a
favorable redox state at the expense of the cell’s metabolic
power. Dihydrolipoate released from cells reduces extracel-
lular cystine to cysteine, and thus promotes cellular cysteine
uptake via the ASC system. The dihydrolipoate/lipoate
redox couple has a strong reducing power, with the standard
reduction potential estimated to be —0.32 V. The ability of
this couple to reduce protein thiols, e.g. thioredoxin [123,
124], has been evident, suggesting that lipoate may be
effective in modulating redox-sensitive signal transduction.
Redox modulatory properties and implications of both
lipoate and NAC have been reviewed recently [1, 125].
The observed favorable effects of both lipoate and NAC on
the molecular biology of HIV infection suggest a strong
potential of these drugs for AIDS treatment [121, 122].

The therapeutic potential of erTRX also has been inves-
tigated in a few studies. erTRX inhibited the expression of
human immunodeficiency virus in human macrophages
(Md) by 71%, as evaluated by p24 antigen production and
the integration of provirus at 14 days after infection. On a
concentration basis, thioredoxin was 30,000-fold more
effective in inhibiting HIV production compared with the
reducing agent N-acetylcysteine. erTRX is cleaved by M
to generate the inflammatory cytokine, eosinophil cytotox-
icity-enhancing factor. In contrast to the effect of thiore-
doxin, eosinophil cytotoxicity-enhancing factor enhances
the production of HIV by 67%. Thus, whereas thioredoxin
is a potent inhibitor of the expression of HIV in human
Md, cleavage of thioredoxin to eosinophil cytotoxicity-
enhancing factor creates a mediator with the opposite
effect. Thioredoxin also inhibited the expression of inte-
grated provirus in chronically infected cells, indicating that
it can act at a step subsequent to viral infection and
integration [100]. Thioredoxin has been shown to be
deficient in tissues but high in the plasma of AIDS patients.
Approximately 25% of the HIV-infected individuals stud-
ied had plasma thioredoxin levels greater than the highest
level found in controls (37 ng/mL). Interestingly, AIDS
patients with higher plasma thioredoxin levels (37 ng/mL
or greater) tended to have lower overall CD4 counts. In
addition, an increase in plasma thioredoxin levels corre-
lated with decreased cellular thiols and with changes in
surface antigen expression (CD62L, CD38, and CD20) that
occur in the later stages of HIV infection. Thus, it is
apparent that elevation of plasma thioredoxin levels may be
an important component of advanced HIV disease, perhaps
related to the oxidative stress that is suspected to occur at
this stage [126]. Thus, strategies involving modulation of
the cell redox state appear to have a strong potential in the
management of the HIV disease [72, 127, 128].

Human thioredoxin also contributes to cellular drug
resistance. Thus, an effective strategy to sensitize cancer
cells to anti-cancer drugs is to down-regulate cellular
thioredoxin activity pharmacologically or by using molec-
ular biology tools such as thioredoxin antisense constructs.
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The expression and activity of thioredoxin in Jurkat cells
were dose-dependently enhanced by exposure to cisplatin.
Treatment of Jurkat cells with cisplatin caused transcrip-
tional activation of the human thioredoxin gene through
increased generation of intracellular reactive oxygen inter-
mediates. Cells overexpressing exogenous human thiore-
doxin displayed increased resistance to cisplatin-induced
cytotoxicity, compared with the control clones. After
exposure to cisplatin, the control cells showed a significant
increase in the intracellular accumulation of peroxides,
whereas the thioredoxin-transfected cells did not. Thus,
overexpressed human thioredoxin was observed to be re-
sponsible for the development of cellular resistance to
cisplatin, possibly by scavenging intracellular toxic oxi-
dants generated by this anticancer agent [129]. Thiore-
doxin-dependent increased resistance to Adriamycin® also
has been reported. Adult T-cell leukemia cell lines express-
ing thioredoxin at levels 2.8 to 12 times those of other
T-cell acute lymphocytic leukemia cell lines were 2—15
times more resistant to Adriamycin® than other T-cell
acute lymphocytic leukemia cell lines. Diamide and sodium
selenite, which have been reported to inhibit thioredoxin,
restored the sensitivity to Adriamycin® in adult T-cell
leukemia cell lines [130]. Nitrosoureas of the carmustine
type inhibit only the NADPH reduced form of human
thioredoxin reductase and thereby impair thioredoxin ac-
tivity. Because these compounds are widely used as cyto-
static agents, it has been suggested that thioredoxin reduc-
tase should be studied as a target in cancer chemotherapy
[75]. In thioredoxin antisense transfectants, enhanced sen-
sitivity of cancer cells to drugs such as cisplatin and also
other superoxide-generating agents, e.g. doxorubicin, mit-
omycin C, etoposide, and hydrogen peroxide, as well as to
UV irradiation, has been observed [131]. Thioredoxin also
plays an important role in the growth and transformed
phenotype of some human cancers. The inhibition of tumor
cell growth by a dominant-negative redox-inactive mutant
thioredoxin suggests that thioredoxin could be a novel
target for the development of drugs to treat human cancer
[132].

The distribution of thioredoxin in the brain implicates
an important function in nerve cell metabolism, especially
in regions with high energy demands, and indicates a role of
the choroid plexus in nerve cell protection from environ-
mental influences. After mechanical injury induced by
partial unilateral hemitransection, thioredoxin mRNA ex-
pression is up-regulated in the lesioned area and spreads to
the cortical hemispheres at the lesioned level. Such a
response suggests a function of thioredoxin in the regener-
ation machinery of the brain following mechanical injury
and oxidative stress [133]. Mouse thioredoxin peroxidase
has a broad tissue distribution, but its expression is espe-
cially marked in cells that metabolize oxygen molecules at
high levels such as erythroid cells, renal tubular cells,
cardiac and skeletal muscle cells, and certain type of
neurons. Levels of increased expression of thioredoxin
peroxidase in the brain have been observed to be coinci-

C. K. Sen

dent with regions known to be especially sensitive to
hypoxic and ischemic injury in humans. Expression of
mouse thioredoxin peroxidase in PC12 pheochromocytoma
cells prolonged survival of the cells in the absence of nerve
growth factor and serum, indicating that thioredoxin per-
oxidase is able to promote neuronal cell survival. Thus, it
has been proposed that thioredoxin peroxidase contributes
to antioxidant defense in erythrocytes and neuronal cells by
limiting the destructive capacity of oxygen radicals [134].
These findings have identified a novel gene that appears to
be relevant to hypoxic brain injury and may be of impor-
tance in the development of new approaches to abrogate
the effects of ischemic- and hypoxic-related injury in the
central nervous system.

This work is dedicated to the memory of my loving father, Dulal C.
Sen, who passed away at the age of 58 in August 1997.
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