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I n t r o d u c t i o n  

The term functional genomics can be referred to as the "development and 
application of a global (genome-wide or system-wide) experimental approach to 
assess gene function by making use of the information and reagents provided 
by structural genomics. ''1 It is characterized by high-throughput or large-scale 
experimental methodologies combined with statistical and computational analysis 
of the results. The fundamental strategy in a functional genomics approach is 
to expand the scope of biological investigation from studying single genes or 
proteins to studying all genes or proteins at once in a systematic fashion. Functional 
genomics promises to rapidly narrow the gap between sequence and function and 
to yield new insights into the behavior of biological systems. 

As the Human Genome Project and related efforts identify and determine the 
DNA sequences of human genes, it is important that highly reliable and efficient 
mechanisms be found to assess individual genetic variation. Three methods for 
obtaining genome-wide mRNA expression data--oligonucleotide "chips, ''2 serial 
analysis of gene expression (SAGE), 3 and DNA microarrays4,5--are particularly 
powerful in the context of knowing the entire genome sequence (and thus all 
genes). 6 

Types  of  DNA Hybr id iza t ion  Arrays  

Current array formats can be categorized into the following four groups. 

1. Macroarrays: Macroarrays rely on robotically spotted probes that have 
been immobilized on a membrane-based matrix. The probe density is generally 

1 p. Hieter and M. Boguski, Science 278, 601 (1997). 
2 S. E Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. E Holmes, and C. L. Adams, Nature (London) 

364, 555 (1993). 
3 V. E, Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler, Science 270, 484 (1995). 
4 M. Schena, D. Shalon, R. Heller, A. Chai, P. O. Brown, and R. W. Davis, Proc. Natl. Acad. Sci. 

U.S.A. 93, 10614 (1996). 
5 M. Schena, D. Shalon, R. W. Davis, and E O. Brown, Science 270, 467 (1995). 
6 V. E. Velculescu, L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai, D. E. Bassett, Jr., E Hieter, 

B. Vogelstein, and K. W. Kinzler, Cell 88, 243 (1997). 
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lower on these arrays compared with those of the other three groups. These arrays 
mostly use radioactive probe labeling. In some cases chemiluminescent labeling 
has also been described. 

2. Microarrays: Microarrays use a glass or plastic slide as matrix. These arrays 
have a higher density of probes compared with macroarrays and use fluorescent 
labeling-based detection. 

3. High-density oligonucleotide arrays (gene chips): The probe is generated 
in situ on the surface of the matrix. The leader in these arrays is Affymetrix (Santa 
Clara, CA) and their combinatorial synthesis method. 

4. Microelectronic arrays: Microelectronic arrays represent one of the more 
recent formats of hybridization arrays currently under development by Nanogen 
(San Diego, CA). Instead of a membrane or a glass slide platform, these arrays 
consist of a set of electrodes covered by a thin layer of agarose coupled with 
affinity moiety (permitting biotin-avidin immobilization of probes). Selection 
and adjustment of proper physical parameters enable rapid DNA transport, site- 
selective concentration, and accelerated hybridization reactions to be carried out 
on active microelectronic arrays. These physical parameters include DC current, 
voltage, solution conductivity, and buffer species. Generally, at any given cur- 
rent and voltage level, the transport or mobility of DNA is inversely proportional 
to electrolyte or buffer conductivity. The incorporation of controllable electric 
fields gives a new degree of control over probe deposition and target hybridi- 
zation. 7,8 

H i g h - D e n s i t y  Ol igonuc leo t ide  Ar r ays  

The leading arrays in the category of high-density oligonucleotide arrays are 
manufactured by Affymetrix and utilize the combinatorial synthesis principle. 9 
The arrays are designed by using a light-directed chemical synthesis process that 
creates a series of photolithographic masks to define chip exposure sites, followed 
by specific chemical synthesis steps. This process constructs high-density arrays of 
oligonucleotides. Approximately 20 different probe pairs represent each gene on a 
chip. Each probe pair consists of a perfect match (PM) oligonucleotide probe and a 
single-base mismatch (MM) oligonucleotide (Fig. l). The arrays are designed for 
gene expression as well as single-nucleotide polymorphism (SNP) detection and 
they cover a large range of different species. The sequence data that Affymetrix 
uses to build the arrays are downloaded from public databases such as UniGene 
and GenBank. 

7 C. F. Edman, D. E. Raymond, D. J. Wu, E. Tu, R. G. Sosnowski, W. E Butler, M. Nerenberg, and 
M. J. HeUer, Nucleic Acids Res. 25, 4907 (1997). 

8 W. M. Freeman, D. J. Robertson, and K. E. Vrana, Biotechniques 29, 1042 (2000). 
9 G. C. Kennedy, EXS 89, 1 (2000). 
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FIG. 1. Approximately 16--20 different probe pairs represent each gene on a chip. Each probe 
pair consists of a perfect match (PM) oligonucleotide probe and a single-base mismatch (MM) 
oligonucleotide. 

For the chips to work properly, a sample must be prepared according to 
Affymetrix protocols. A brief description of the procedures involved in assess- 
ing a gene expression profile, using Affymetix GeneChip arrays, is provided. 

Samp l e  P r e p a r a t i o n  

The oligonucleotides on the chip or microarray are called the probes and the 
sample (total RNA or mRNA) that is put on to interrogate is called the target. The 
process is inverted from a traditional Northern analysis. 

Total RNA Isolation 

RNA is extracted from cells with an RNeasy total RNA isolation kit (Qiagen, 
Chatsworth, CA). For tissues, RNA is first extracted with TRIzol (Invitrogen, 
Carlsbad, CA) RNA extraction reagent and then cleaned up with an RNA isolation 
kit (Qiagen). 

cDNA Synthesis 

The first strand is synthesized by reverse transcribing the RNA, using the 
Superscript Choice system (Invitrogen) and oligo(dT)24-anchored T7 primer 
[high-performance liquid chromatography (HPLC) purified] at 42 ° for 60 min and 
then at 70 ° for 15 min. The second strand is synthesized by using the first-strand 
synthesis reaction, 5× second-strand buffer, Escherichia coli DNA polymerase, 
and T4 DNA polymerase. The cDNA is isolated according to the Phase Lock gel 
extraction (Eppendorf, Hamburg, Germany) procedure. 

In Vitro Transcription, cRNA Clean-Up, and Fragmentation 

Biotinylated RNA is synthesized with an RNA transcript labeling kit (BioArray 
HighYield: Enzo Diagnostics, Farmingdale, NY). A detailed protocol is provided 
with the kit. 

In Vitro Transcription Clean-Up. Qiagen RNeasy minicolumns are used to 
clean up the in vitro transcription (IVT) cRNA. After the clean-up, cRNA is frag- 
mented with 5x fragmentation buffer (200 mM Tris-acetate, pH 8.1; 500 mM 
potassium acetate; 150 mM magnesium acetate). 
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GeneChip :  Hybr id iza t ion ,  Wash ing ,  a n d  S c a n n i n g  

Further sample processing is mostly automated. The hybridization oven 640 
automates the hybridization process for GeneChip probe arrays. The oven provides 
precise temperature control to ensure successful hybridization, and cartridge rota- 
tion to provide continuous mixing. Up to 64 arrays can be processed at one time. 
The GeneChip fluidics station automates the introduction of the nucleic acid target 
to the probe array cartridge and controls the delivery of reagents and the timing 
and temperature for hybridization of nucleic acid target to the probe array. Each 
fluidics station can independently process four arrays at one time. The probe array 
nucleic acid target is simply loaded on the fluidics station. Information about the 
type of array to be analyzed is punched in and the software automatically selects 
the appropriate protocol. Once processing is complete, messages displayed on the 
PC and the fluidics station indicate that the probe array is ready for scanning. The 
GeneArray scanner is from Agilent (Palo Alto, CA) and utilizes a charge-coupled 
device (CCD) camera and an argon ion laser to excite fluorescent molecules incor- 
porated into the nucleic acid target to generate a quantitative hybridization signal 
(Fig. 2). With precise optics, the GeneArray scanner focuses the laser on 3-#m 
spots within each of the thousands of probe features contained on the GeneChip 
probe array. A high-resolution image of the probe array is displayed in real time 
during scanning, and fluorescence intensity data are automatically stored in a 
raw file. 

A B 

FIG. 2. A representative high-resolution image (A) and a zoomed area of the image (B) of hy- 
bridization signals generated by the GeneArray scanner. 
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Notes 

Because chips can be used only once, the target must be tested to ensure that 
it is of high-enough quality to go onto the expression chip. The test chip serves as 
one control for the experiment, and the other controls are discussed below. It is 
critical that test chips be used before the target is put on the gene expression chip 
(sections below contain example data). 

T e s t  Chips :  T a r g e t  Labe l ing  a n d  H y b r i d i z a t i o n  Eff ic iency Ana lys i s  

Once the two targets are prepared, they are each put on a test chip to determine 
whether they are of high-enough quality to go onto the expression chips. When 
looking at the data, the control gene names always begin with an AFFX prefix. 
These are AFFX-Murine BetaActin and AFFX-Murine GAPDH (glyceraldehyde- 
3-phosphate dehydrogenase) on the routine arrays. Ideally, when comparing 
5' signal with 3' signal, a 1 : i ratio will be seen. Empirically, targets having Y : 3' 
ratios between 0 and 3 generally give good results, those with ratios between 3 and 
4 give marginally good results, and those with ratios >4 give poor results. Thus 
test chips are used to determine target-labeling quality. Also included are control 
probe sets that interrogate phage sequences. BioB, BioC, BioD, and Cre are such 
sequences and are used as hybridization controls. These probe sets are designed 
to detect the prelabeled oligonucleotides that are contained in the eukaryotic hy- 
bridization control kit. This is to ensure that the hybridization, washing, staining, 
and scanning steps are capable of detecting a broad linear range of labeled cRNA 
with a high level of sensitivity. Each chip must first be analyzed, using the above- 
described controls as criteria, before the chips can be compared with one another. 
After basic analysis, scale factors must be examined between chips and should not 
vary by 3-fold. 

Affymetrix has included controls on the chips so that the data can be quantified 
and also reproduced. The controls are also used to test different parts of the proce- 
dure so that troubleshooting can be performed if necessary. All the genes also act 
as their own control, with the perfect match and mismatch sequences that are used 
on the arrays, and the difference in hybridized signal between the probe sets is used 
to identify nonspecific hybridization and background signal. Affymetrix calls this 
value the average difference (see Data Analysis, below) and it is commonly used 
as the expression level for the probe set. 

For the pilot study, RNA was isolated from normal and treated mice. The 
Affymetrix protocol was used to prepare the targets. The basic or absolute analysis 
of chip I had a value of 1.9 for the 5' : 3' ratio of GAPDH. Furthermore, the control 
probe sets (BioB, BioC, BioD, and Cre) were also present on the chip. The basic 
or absolute analysis of chip 2 (RNA from treated mouse) had a value of 2.0 for the 
5' : 3' ratio of GAPDH. Control probe sets BioB, BioC, BioD, and Cre were also 
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present on the chip. Both chips passed the specification of the controls, and the last 
criterion that they must pass is the fold change of the scale factor between them. 
This is a crucial point because if the criteria are met then the chips can be compared 
with one another and the differences in gene expression will be analyzed. For this 
study, the two chips had a fold change of 1.5 for the scale factor, which means that 
they can be compared with one another. 

The second round of analysis is called comparative analysis. This analysis uses 
a control chip that is compared with an experimental chip. In the pilot study, the 
control chip would be chip 1 and the experimental chip would be chip 3. There are 
more than 12,000 genes and expressed sequence tags (ESTs) on one murine chip. 
The first step is to reduce the number of genes, so that the data show only those 
that have a significant change in either the control chip or the experimental chip. 
The software suite provided by Affymetrix does this analysis by using different 
algorithms that compare the two chips. It is important to note that the algorithms 
tend to be on the conservative side when determining whether a gene is present or 
not. In the pilot study, the reduced data, once run through the algorithms, showed 
that 283 genes had a significant difference between the control and experimental 
chips (Fig. 3). Each gene in a comparison analysis has five potential difference call 
outcomes: Increase, Marginally Increase, Decrease, Marginally Decrease, and No 
Change. To reduce the data, the No Change calls are removed, as are those with 
a fold change of less than 2. The fold change indicates the relative change in the 
expression levels between the experiment and control targets. Genes that indicate a 
marginal increase or decrease must be looked at individually to determine whether 
a definite call can be made. The reduced data can then be easily exported into a 
Microsoft Excel file for further manipulation. 

D a t a  Ana lys i s  

To analyze massive amounts of genome-wide data generated by microarray 
experiments is a challenging task. Gene expression data are useless unless bio- 
logically meaningful information can be extracted and presented in some readily 
comprehensible fashion, l° The production of this information, involving many 
facets of image processing, statistical analyses, and data visualization, is possible 
only with computers powered by sophisticated software. The choice of data anal- 
ysis strategy should be influenced by the purpose of the microarray experiment 
and the user's knowledge of the biology of the system under investigation. 

Data Mining 

The discovery of patterns in gene expression relationships is part of the realm 
of data mining. Known collectively as clustering, these multivariate statistical 

10 j. Quackenbush, Nat. Rev. Genet. 2, 418 (2001). 
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methods have become the essential tools for the elucidation of gene expression pat- 
terns in microarray data. A number of different methods, for example, k-means, 
self-organizing maps (SOMs), hierarchical clustering, support vector machines, 
and Bayesian statistics, are employed for clustering analysis) ° Another useful 
data-mining method, principal component analysis (PCA), is a data reduction 
technique used to identify uniquely expressed genes. Bioinformatics and data stor- 
age are the culmination of the microarray analysis process. Many of the software 
analysis packages offer immediate access to many public or institutional genetic 
databases via the Internet. 

For the present study, data were analyzed as described below, using Xalysis- 
Lite (XPROTEIN; Bioinformatics, San Rafael, CA). Three samples, each from a 
different control animal, were assigned to chips in control group A; likewise, three 
samples from different treated animals were assigned to chips in experimental 
group B. The goal to identify candidate genes that vary according to treatment 
should not be hindered by changes due to a single individual's traits. The analysis 
of individual probe sets and how they vary between the control group and the 
experimental group must take this into account. The approach described here is 
different compared with the "pooling" technique, in which samples are taken 
from a population of individuals, mixed, and analyzed on a single chip, thereby 
averaging their expression characteristics. In the present study, rather than mix the 
samples, a different chip is used for each. Assigning individual samples each to a 
different chip reduces biological variation because multiple different animals are 
used, and it reduces variation due to the measuring technology because multiple 
chips are used. As a result this technique can mask small, but real, expression 
differences because the source of variation is confounded. It may be coming from 
the individual animals, or the individual chips, or both. It is advisable, therefore, to 
design the overall experiment to use as many replicate chips measuring the same 
sample as time and budget allow. 

After processing each chip as described earlier, the overall expression mean 
and standard deviation of each chip is calculated from each probe set's average 
difference value, one of the standard values output by the Affymetrix software. 
The highest 2% and lowest 2% of the values are considered outliers and not used 
in this calculation. 

The statistics of experimental groups vary considerably, but because each 
comes from a different treated individual, all are accepted for further analysis 
(Table I). More stringent criteria for acceptance can always be adopted later. 

P robe  Se t  Ana lys i s  Pro toco l  

The average difference value of each probe set is first clamped to zero and 
normalized by using the mean of its chip (i.e., from Table I). It is then scaled 
by using the mean of the group means. This calculation smooths out differences 
between individuals, but retains the overall expression level suggested by the group. 
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TABLE I 
GROUP DATA 

Group Mean Standard deviation 

Control 
A1 29.16 61.92 
A2 27.60 59.92 
A3 29.74 63.91 

Experimental 
BI 18.63 41.15 
B2 38.66 81.23 
B3 90.25 176.0 

The consistency of each probe set's values across all experiments must be care- 
fully evaluated before an effect can be considered real. To that end a two-sample 
independent t test between the control and experimental groups is applied to each 
probe set's values (after normalization and scaling) as follows: 

t---- 
A2_ (E Ai)2 + B 2 ~ \ Af" "~B ~ [ ~  i ~ + Y ~ ° i :  nS 1 1/2 " 1 1 

[_ (na--1)+(nB--l) J 

In this equation, Ai  refers to the individual values of one probe set from the control 
group and Bi refers to the individual values of the same probe set from the experi- 
mental group; nA and  ns  are the total number of experiments in each group; and 
,4 and/~ are the means. The t value can be used to determine the probability that 
values from group A belong to the same statistical distribution as values from group 
B. The probability value implied by t depends on the degrees of freedom of the 
data: 

d f =  (na - 1) + (rib -- 1) 

Given t and df, the probability can be determined from a standard table of t values. 
If the probability is small, it is reasonable to assume that the treatment has altered 
the expression of the probe set in some way. Only those probe sets that pass this 
test are considered for further analysis (Table II). Regarding Table II, the first 
probe set illustrates data consistent among the experiments from each group; the 
second shows data that are highly inconsistent. Because the probability value of 
the first set is below the chosen threshold of 1% it is considered for future analysis; 
the second set, with a probability of more than 17%, is rejected. 

It is reasonable to rely on this test to avoid the confounding problem because 
it rejects probe sets that vary in a nonspecific way between experimental groups, 
whether it be due to biological noise or noise from the technology. It is possible, 
however, that a real effect is being masked by technology noise and is, therefore, 
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TABLE II 
STATISTICAL ANALYSIS 

Transcript A Transcript B 

Probe set Avg. diff. Normalized Avg. diff. Normalized 

A 1 45.90 45.39 97.20 96.12 
A2 39.00 40.75 58.60 61.22 
A3 44.70 43.33 78.40 76.00 

Mean of A 43.16 77.78 

B 1 50.20 132.50 37.60 99.24 
B2 89.90 114.38 213.70 271.89 
B3 207.40 113.02 237.20 129.25 

Mean of B 119.96 166.80 

t value - 11.96 - 1,64 
Probability 0.03 17,59 
Fold change 2.80 2.1 

Abbreviations~symbols: Avg. diff., Average difference. 

rejected by this test. That is why it is advisable to run replicate experiments using 
the exact same sample when possible. 

S c o r i n g  C a n d i d a t e  P r o b e  S e t s  

Applying the above described test identified about 300 genes worthy of further 
examination. Which should be examined first? A quick way to decide is to score 
the candidate probe sets that passed the t test according to their fold change in 
expression weighted toward higher overall expression values. The mean value of 
the probe set within each experiment group is used from here on as its expression 
value within that group. 

i ~ + x  
Score -- _ if B is greater than or equal to A, or 

A + x  

71+x 
Score -- B + x if A is greater than I} 

The value of variable x is set equal to the expression level deemed significant by 
the researcher. The list of candidates is then ordered according to this score. Probe 
sets near the top of the list are overexpressed in group B compared with group A; 
probe sets near the bottom of the list are underexpressed in group B compared 
with group A. Although the t value alone can be used to order the data in a similar 
fashion, the score calculated with this method is similar to the fold change value 
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for the expression range of interest. Thus, the topmost and bottommost entries 
in this sorted list provide a convenient starting point for evaluation and further 
experimentation when examined by the critical eye of the researcher. 
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[42] Reporter Transgenes for Study of Oxidant Stress 
in Caenorhabditis elegans 

By CHRISTOPHER D. LINK and  CAROLYN J. JOHNSON 

I n t r o d u c t i o n  

For many studies of the effects of oxidant stress on cells it can be advantageous 
to visualize the transcriptional response of the cell in vivo in real time. In opti- 
cally transparent model systems, gene expression can be directly visualized by the 
construction of reporter transgenes expressing green fluorescent protein (GFP), as 
originally demonstrated by Chalfie and colleagues.1 We describe both the general 
considerations involved in the construction of GFP reporter transgenes responsive 
to oxidative stress and the specific details of constructing a representative trans- 
genic reporter in the model nematode worm Caenorhabditis elegans. Although 
the details of the representative reporter transgene apply specifically to C. elegans, 
the general approach should be applicable to many model systems. 

Ident i f ica t ion  of  Ox idan t  S t r e s s -Respons ive  Genes  

Construction of oxidative stress-responsive reporter transgenes first requires 
identification of oxidative stress-responsive genes. Candidate responsive genes can 
be identified by extrapolation from studies of other systems [e.g., a C. elegans GFP 
reporter transgene based on the small C. elegans heat shock protein 16 (HSP16) 
was found to be responsive to oxidative stress, 2 an unsurprising result considering 
previous studies of mammalian small heat shock proteins 3] or from direct gene 

1 M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Science 263, 802 (1994). 
2 C. D. Link, J. R. Cypser, C. J. Johnson, and T. E. Johnson, Cell Stress Chaperones 4, 235 (1999). 
3 X. Preville, H. Shultz, U. Knauf, M. Gaestel, and A. E Arrigo, J. Cell Biochem. 69, 436 (1998). 
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